
1

Sound Non-Statistical Clustering of Static Analysis Alarms

WOOSUK LEE, Seoul National University, Korea
WONCHAN LEE, Stanford University, USA

DONGOK KANG, Seoul National University, Korea
KIHONG HEO, Seoul National University, Korea
HAKJOO OH∗, Korea University, Korea
KWANGKEUN YI, Seoul National University, Korea

We present a sound method for clustering alarms from static analyzers. Our method clusters alarms by

discovering sound dependencies between them such that if the dominant alarms of a cluster turns out to be

false, all the other alarms in the same cluster are guaranteed to be false. We have implemented our clustering

algorithm on top of a realistic buffer-overflow analyzer and proved that our method reduces 45% of alarm

reports. Our framework is applicable to any abstract interpretation-based static analysis and orthogonal to

abstraction refinements and statistical ranking schemes.

CCS Concepts: • Theory of computation → Program analysis; Abstraction; • Software and its engi-
neering→ Formal software verification;

Additional Key Words and Phrases: Static Analysis, Abstract Interpretation, False Alarms

ACM Reference Format:
Woosuk Lee, Wonchan Lee, Dongok Kang, Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. 2017. Sound Non-

Statistical Clustering of Static Analysis Alarms. ACM Trans. Program. Lang. Syst. 1, 1, Article 1 (August 2017),
35 pages.

https://doi.org/0000001.0000001

1 INTRODUCTION
1.1 Problem
False alarms are the main obstacle to the wide adoption of sound static analysis tools that aim to

prove safety properties about programs. Users of sound static analyzers suffer from a large number

of false alarms, where false alarms often outnumber real errors. For instance, in a case of analyzing

∗
Corresponding author.

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the

Korea government (MSIP) (No.B0717-16-0098 and No.R0190-16-2011, Development of Vulnerability Discovery Technologies

for IoT Software Security) and Basic Science Research Program through the National Research Foundation of Korea (NRF)

funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1C1B2014062). This research was also supported

by the Engineering Research Center of Excellence Program of Korea Ministry of Science, ICT & Future Planning(MSIP) /

National Research Foundation of Korea(NRF) (Grant NRF-2008-0062609), and by Samsung Electronics Software Center.

Author’s addresses: Woosuk Lee, D. Kang, K. Heo and K. Yi, Computer Science and Engineering Department, Seoul National

University; Wonchan Lee, Computer Science Department, Stanford University; H. Oh, Computer Science and Engineering

Department, Korea University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

0164-0925/2017/8-ART1 $15.00

https://doi.org/0000001.0000001

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 W. Lee et al.

commercial software, we have found only one real error in 273 buffer-overflow alarms, after tedious

and time-consuming alarm investigation efforts [16].

Statistical ranking schemes [16, 20] have been proposed to find real errors quickly, but they

do not fundamentally reduce alarm-investigation burdens especially in software verification. The

ranking schemes alleviate the false alarm problem by showing alarms that are most likely to be

real errors over those that are least likely. However, these ranking schemes cannot completely

dismiss unlikely alarms. For example, we still need to examine all alarms to find the real ones in

safety-critical softwares.

1.2 Our Solution
Our solution is to reduce alarm-investigation burden by clustering alarms according to their sound

dependence information. We say that alarm A has (sound) dependence on alarm B whenever if

alarm B turns out to be false, then so does alarm A as a logical consequence. When we find a set

of alarms depending on the same alarm, which we call a dominant alarm, we can cluster them

together. Once we find clusters of alarms, we only need to check whether their dominant alarms

are false.

In this paper, we present a sound alarm-clustering method for static analyzers. Our analysis

automatically discovers sound dependencies among alarms. Combining such dependencies, our

analysis finds clusters of alarms which have their own dominant alarms. If the dominant alarms

turn out to be false (true resp.), we can assure that all the others in the same cluster are also false

(true resp.).

1.3 Examples
Example 1 through 3 show examples of alarm dependencies and how they reduce alarm-investigation

efforts. These examples are discovered automatically by our clustering algorithm.

Example 1.1 (Beginning Example). Our analyzer reports 5 buffer-overflow alarms for the following

code excerpted fromNlkain-1.3 (alarms are underlined, and dominant alarms are double-underlined).

1 void residual(SYSTEM *sys, double *upad, double *r) {
2 nx = 50;
3 u = &upad[nx+2];
4 ...
5 for (k = 0; k < ny; k++) {
6 u++;
7 for(j = 0; j < nx; j++) {
8 r[0] = ac[0]*u[0] - ax[0]*u[-1] - ax[1]*u[1] - ay[0]*u[-nx-2]

9 - ay[nx]*u[nx+2] - q[0];

10 r++; u++; q++; ac++; ax++; ay++;
11 }
12 u++; ax++;
13 }
14 }

Note the following two facts in this example:

(1) If the buffer access u[-nx-2] at line 8 overflows the buffer, so do the others since -nx-2 is
the lowest index among the indices of all the buffer accesses on u.

(2) If the buffer access u[nx+2] at line 9 does not overflow the buffer, neither do the others since

nx+2 is the highest index among the indices of all the buffer accesses on u.

Using these two facts, we can cluster alarms in the following way: we can find a false alarm cluster

which consists of all the alarms in the example and the dominant alarm is the one of the buffer

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:3

access u[nx+2] at line 9. We can also construct a true alarm cluster with the same set; the buffer

access u[-nx-2] at line 8 is the dominant alarm of the cluster. Thus, in order to check the program’s

buffer-overrun safety, it is sufficient to show the safety of the single buffer access u[nx+2], instead
of doing that for all the reported alarms. On the other hand, finding the access u[-nx-2] unsafe
will help to spot other potential vulnerabilities accordingly. □

Example 1.2 (Inter-procedural alarm dependencies). The following code excerpted fromAppcontour-

1.1.0 shows inter-procedural alarm dependencies. Our method finds dependencies among the

three alarms at line 3, 4, and 10. In the example, arrays invmergerules and invmergerulesnn
have the same size 8. The function apply_rule is the only one caller to the other functions

lookup_mergearcs and rule_mergearcs.

1 int lookup_mergearcs(char *rule) {
2 ...
3 for (i = 1; invmergerules[i]; i++)

4 if (strcasecmp(rule, invmergerulesnn[i] == 0))
5 return (i);
6 ...
7 }
8 int rule_mergearcs(struct sketch *s, int rule, int rcount) {
9 if (debug)
10 printf("%s count %d", invmergerules[rule], rcount);
11 ...
12 }
13 int apply_rule(char *rule, struct sketch *sketch) {
14 ...
15 if ((code = lookup_mergearcs(rule)))
16 res = rule_mergearcs(sketch, code, rcount);
17 ...
18 }

Note that if either one of the alarms is true (or false), so are the others since all the alarms access

the same array with the same index for the following reasons.

(1) There is no update on the value of i between the two accesses at line 3 and 4.

(2) The value of i at line 3 flows to the variable rule at line 10 through function calls and returns

(5→ 15→ 16→ 10).

We can find false and true alarm clusters in a similar manner as we did in the example 1.1. Instead

of inspecting all of the alarms, checking either one of the alarms (e.g., the one at line 3) is sufficient

to determine if the other remaining alarms are true or false. □

Example 1.3 (Multiple dominant alarms). The following code excerpted from GNU Chess 5.0.5

shows an example of a cluster with multiple dominant alarms. Three alarms are reported at line 3,

4, and 9. The arrays cboard and ephash have the same size 64.

1 void MakeMove(int side, int *move) {
2 ...
3 fpiece = cboard[f];

4 tpiece = cboard[t];

5 ...
6 if (fpiece == pawn && abs(f-t) == 16) {
7 sq = (f + t) / 2;
8 ...
9 HashKey ^= ephash[sq];

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:4 W. Lee et al.

10 }
11 }

Since sq is the average of f and t, if both buffer accesses at line 3 and 4 are safe, the buffer access

at line 9 is also safe. In this example, we have a false cluster which have multiple dominant alarms

(the alarms at line 3 and 4). □
Although all the example programs are concerned with buffer-overflow detection for C programs,

all techniques and algorithms which will be described in this paper can be generalized to other

languages and safety properties as well because we are based on a general model of programs and

static analyses.

1.4 Contributions
In this paper, we make the following contributions:

• We propose a sound alarm-clustering method for static analyzers. Our framework is general

and applicable to any semantics-based static analyzers. It is orthogonal to both refining

approaches and statistical ranking schemes.

• We provide three concrete instance analyses of the proposed framework. We present design

and implementation of our clustering method based on interval, octagon, and symbolic

domains.

• We prove the effectiveness of our clustering method with a realistic static analyzer for buffer-

overflow detection. On 14 open-source benchmarks, our clustering method identified 45%

of alarms to be non-dominating. This result amounts to 45% reduction in the number of

investigated alarms if the other 55% turns out to be false.

This paper is an extension of [22]. Compared to the previous version, the current paper presents

a new clustering algorithm that guarantees to find a minimal set of dominant alarms (Section 4.1),

provides a new instance of the framework based on a symbolic domain (Section 5.4), shows experi-

mentally that alarm-clustering with the symbolic domain outperforms the previous octagon-based

method in [22], and formally proves the soundness of the proposed alarm-clustering framework

and algorithms (Appendix).

2 OVERVIEW
Before formally presenting our alarm clustering approach (Section 3, 4, 5), we illustrate key aspects

of our approach with an example. In this section, we consider a flow-sensitive interval analysis for

buffer-overflow detection. However, our method is general and applicable to any trace-partitioning

strategy, e.g., context-sensitivity. In Section 3, we present our approach in a general setting.

Example Program. Consider the following code snippet:
φ1 : int* a = init_array(0); // a.size = [7, 7]
φ2 : int* b = init_array(1); // b.size = [-oo, +oo]
φ3 : if (!*b)
φ4 : exit (*b);
φ5 : int sum =0;
φ6 : int i = read_int(); // i = [0, +oo]
φ7 : while (*) {
φ8 : sum += a[i-1];
φ9 : sum += a[i+2];
φ10 : sum += a[i-2];
φ11 : sum += a[i+1]; }

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:5

The analysis computes interval values for each variable at each program point. Suppose the

analysis reports five buffer-overflow alarms: Alarms are underlined, and the values of variables in

intervals are annotated in comments. Throughout this section, we will use program point and alarm

interchangeably; alarm φi means the one at the program point φi . Assume that a gets allocated by

an array of size 7 at line φ1 but the analysis cannot precisely infer the size of b at line φ2, so that b
gets allocated by an array of size [−∞,+∞] during the analysis.

Key Idea. The key idea of our alarm clustering method is what we call sound refinement by
refutation (Section 3.4); if we can kill an alarm φ j from the abstract semantics refined under the

assumption that alarm φi is false, the falsehood of φ j is determined by that of φi . Suppose alarm
φ9 is false. Then, i at φ9 should have interval [−2, 4] because the value of i+2 should lie in [0, 6].
Similarly, suppose alarm φ10 is false. Then, i at φ10 should hold [2, 8] because the value of i-2
should lie in [0, 6]. If we re-analyze the program under those assumptions, the interval value of i
will be [2, 4] throughout the loop (φ7 – φ11), which removes the other alarms in the loop (φ8 and

φ11). We can soundly conclude that if the dominant alarms φ9 and φ10 are false, so are the other

alarms φ8 and φ11 in the loop. In Section 3.4, we show that, given an abstract domain equipped

with a sound abstract slice operator used to slice out the erroneous states, our framework provides a

sound method to find a small set of dominant alarms.

By varying the abstract domain used for the refinement by refutation, we can have different

trade-offs between the cost and the number of final alarms. Note that, with the interval domain, we

cannot find that φ3 dominates φ4 because the erroneous state at φ3 cannot be expressed as intervals

as the size of b is unbounded. Therefore, the final alarms in the interval-domain-based clustering

will be:

{φ3,φ4,φ9,φ10 }.

Using a more powerful abstract domain will cluster more alarms. Suppose we use the octagon

domain [28] in the refinement phase. Then, the non-erroneous state at φ3 will be expressed as a

numerical constraint:

0 ≤ b.offset ∧ b.offset < b.size.

With octagon, we can find the dependency as the falsehood assumption of φ3 will be propagated

and kill φ4. Therefore, the final alarms will be {φ3,φ9,φ10 }. But this fewer number of final alarms

comes with a scalability loss as the octagon analysis is generally more expensive than the interval

analysis. In Section 5, we provide designs of three concrete instances of different powers and costs,

which are based on interval, octagon, and symbolic domains, respectively.

Alarm Clustering Algorithms. Now we present two algorithms to find dominant alarms. The

details of these algorithmwill be presented in Section 4. The two algorithms have different trade-offs

between the cost and the number of final alarms. The first algorithm, presented in Section 4.1,

guarantees to find a set of minimal dominant alarms: the set dominates all alarms and does not

contain unnecessaries. However, the algorithm’s running time is proportional to the number of

total alarms. On the other hand, the algorithm in Section 4.2 quickly finds a dominant alarm set

regardless of the number of alarms. Instead, the result may not be minimal. Now, we will describe

how the two algorithms based on the interval domain work on the example program.

Minimal Algorithm. This algorithm begins with finding alarms that can be clustered together

with other alarms. It re-analyzes the program assuming all of the reported alarms are false. Then,

we have the following two alarms:

{φ3,φ4 }.

These two alarms are beyond the power of the interval domain. In other words, we cannot find

dependencies involving them as they survive even after refuting all the alarms. Setting aside the

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:6 W. Lee et al.

two alarms, it will try to find dependencies among the other four alarms in the loop. To suppress

all the alarms in the loop ({φ8,φ9,φ10,φ11 }) false, i at the loophead should hold [2, 4], and we will

find minimal refutations leading to the interval value. For each alarm, the algorithm refutes all but

that alarm and reanalyze the program. The following table shows each refutation and its result.

Refuted alarms i at φ7 after re-analysis

{φ9,φ10,φ11 } [2, 4]
{φ8,φ10,φ11 } [2, 5]
{φ8,φ9,φ11 } [1, 4]
{φ8,φ9,φ10 } [2, 4]

In the second and the third rows, we do not refute φ9 and φ10 respectively, and we fail to get

[2, 4]. In the first and the last rows, we do not refute φ8 and φ11 respectively, but still we get [2, 4].
Therefore, refuting φ9 and φ10 is a minimal requirement to suppress all the alarms. With the two

alarms beyond the capability of interval, the algorithm reports the following final alarms:

{φ3,φ4,φ9,φ10 }.

We explain the algorithm in more detail in Section 4.1. Note that the algorithm requires to run the

analysis multiple times.

Non-minimal but Efficient Algorithm. We also present more efficient algorithm that finds a subset

of all alarm dependencies in a single fixpoint computation (Section 4.2). The idea is to run the

analysis after refuting all alarms and track which alarm’s falsehood assumption kills which alarm.

After slicing out erroneous states at each program point, the refined states will be propagated

through the program by the narrowing operation. First, we ignore φ3 and φ4 since the erroneous

states are beyond the capability of interval. At φ8, i holds [1, 7] by assuming alarm φ8 false. We

record the fact that refuting alarm φ8 contributes to the current value of i. This refined state is

propagated further. At φ9, i initially holds [−2, 4]. We conjoin the incoming state from φ8 and this

value obtaining the following result.

[1, 7] ⊓ [−2, 4] = [1, 4]

We record that refuting alarms φ8 and φ9 contribute to the current value of i. At φ10, i initially

holds [2, 8]. We conjoin the incoming state from φ10 and this value obtaining the following result.

[1, 4] ⊓ [2, 8] = [2, 4]

We record alarms refuting φ8, φ9, and φ10 contribute to the current value of i. At φ11, i initially

holds [−1, 5] Conjoining this state with the incoming state from φ10 does not result in a narrowed

state since [−1, 5] ⊓ [2, 4] = [2, 4]. We do not add φ11 to the list of refuted alarms that contribute to

the current value of i. After analyzing the loop once again, i holds [2, 4] at every program points

in the loop and the fixpoint is reached. With the new fixpoint, we have the alarms {φ3,φ4 }. In
addition to this set, we additionally report the dominant alarms. We know that alarms φ8, φ9, and

φ10 dominate φ11. The final alarms will be

{φ3,φ4,φ8,φ9,φ10 }.

Note that alarm φ8 is additionally reported compared to the minimal algorithm. When analyzing

φ8, we do not know in advance that the refutations of φ9 and φ10 will completely eclipse the effect

of refuting φ8. For this reason, the algorithm may report redundant dominant alarms.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:7

3 ALARM CLUSTERING FRAMEWORK
In this section, we describe our general framework for alarm clustering, which provides a method to

find clusters for a given set of dominant alarms. The input to the framework is a static analyzer that

has two assumptions: 1) we assume that the analyzer is defined with a trace-partitioning function

δ ; and 2) the abstract domain of the analyzer comes with a meet operator and a sound abstract slice

operator. These requirements will be explained in Section 3.1 and 3.4, respectively.

3.1 Static Analysis
We first define a class of static analyses that we consider in this paper. The analysis is used to prove

safety properties about programs. It is defined by abstract interpretation of trace semantics based

on the trace partitioning [26]. We begin with basic notions used in this paper.

Programs. We represent a program P as a transition system (S,→,Sι) where S is the set of
states of the program, (→) ⊆ S × S is the transition relation of the possible, elementary execution

steps, and Sι ⊆ S denotes the set of initial states.

Collecting Semantics. We write S+ for the set of all finite non-empty sequences of states. If

σ ∈ S+ is a finite sequence of states, σi denotes the (i + 1)-th state of the sequence, σ0 is the first
state, and σ⊣ the last state. If τ is a prefix of σ , we write τ ⪯ σ .

We say a sequence σ is a trace if σ is a (partial) execution sequence, i.e., σ0 ∈ Sι ∧ ∀k .σk → σk+1.
The trace semantics of program P is defined as the set of all traces of the program:

[[P]] = {σ ∈ S+ | σ0 ∈ Sι ∧ ∀i .σi → σi+1}

Note that the set [[P]] is a least fixpoint of the following semantic function FP :

FP : ℘(S+) → ℘(S+)
FP (E) = {⟨sι⟩ | sι ∈ Sι }

∪ {⟨s0, · · · , sn+1⟩ | ⟨s0, · · · , sn⟩ ∈ E ∧ sn → sn+1}.

That is, [[P]] = lfp FP .

Abstract Semantics. The class of static analyzers that this paper considers is obtained by

abstracting the trace semantics in two steps. First, we abstract the set of traces (i.e. ℘(S+)) into
partitioned sets of reachable-states which are maps from a pre-defined set, called “partitioning

indices” (e.g., program points) Φ to the set of concrete states. Next, we abstract the set of states

associated with each partitioning index into an abstract state (
ˆS), leading to the final abstract domain

ˆD = Φ→ ˆS. The overall abstraction is formalized by the following two-step Galois-connection:

℘(S+) −→
←−
α0

γ0
Φ→ ℘(S) −→

←−
α1

γ1
Φ→ ˆS.

We call the first part partitioning abstraction and the second part set of states abstraction.
(1) Partitioning abstraction: Suppose that we have a pre-defined set Φ of partitioning indices

and a partitioning function

δ : Φ→ ℘(S+)

which maps each partitioning index (Φ) to a set of traces. We assume that the partitioning

function is well-formed in a sense that it covers all the traces, i.e.,⋃
φ ∈Φ

δ (φ) = S+

and all the associated sets are disjoint, i.e.,

∀φ1,φ2. φ1 , φ2 =⇒ δ (φ1) ∩ δ (φ2) = ∅.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:8 W. Lee et al.

Example 3.1. The most popular strategy for partitioning is the so-called flow-sensitivity that

partitions the set of traces based on the program points of the final states. When a state

is a pair of program point (C) and a memory state (M), i.e., S = C ×M, this final program

point partitioning is defined by the partitioning function δp (c) = {σ | ∃m. σ⊣ = (c,m)}; the
set C of program points forms the partitioning indices Φ and δp classifies the set of traces

according to their final program points. Other conventional partitioning strategies such as

context-sensitivity, path-sensitivity, loop-unrolling are also obtained by defining appropriate

partitioning indices Φ and function δ . □

With a given partitioning function δ , we first define the partitioned reachable-state domain

Φ→ ℘(S), which is defined by the following Galois-connection:

℘(S+) −→
←−
α0

γ0
Φ→ ℘(S)

where the abstraction function α0 and the concretization function γ0 are defined as follows:

α0 (Σ) = λφ.{σ⊣ | σ ∈ Σ ∩ δ (φ)}
γ0 (f) = {σ | ∀τ ⪯ σ .∀φ ∈ Φ. τ ∈ δ (φ) ⇒ τ⊣ ∈ f (φ)}.

We write [[P]]/δ for the concrete semantics [[P]] modulo the partitioning abstraction by δ , i.e.,
[[P]]/δ ∈ Φ→ ℘(S).

(2) Set of states abstraction: We further abstract the partitioned reachable states by the following

Galois-connection:

Φ→ ℘(S) −→
←−
α1

γ1
Φ→ ˆS.

The Galois-connection of (α1, γ1) is defined as pointwise lifting of Galois-connection (αS , γS)

of states abstraction ℘(S) −→
←−
αS

γS
ˆS.

From this point, we will denote α and γ as α1 ◦ α0 and γ0 ◦ γ1 respectively.

The abstract semantics of program P computed by the analyzer is a fixpoint

ˆ
[[P]] = lfp#F̂

where lfp# is a sound, abstract post-fixpoint operator and the function F̂ :
ˆD→ ˆD is a monotone

or an extensive abstract transfer function such that α ◦ FP ⊑ F̂ ◦ α . The soundness of the static
analysis follows from the fixpoint transfer theorem [8].

3.2 Alarm Dependences
Alarms. Suppose Ω : Φ → ℘(S) specifies erroneous states at each partitioning indices (e.g.

program points). The static analyzer reports an alarm at partitioning index φ ∈ Φ if the abstract

semantics
ˆ

[[P]] involves some error states, i.e.,

γS (ˆ
[[P]](φ)) ∩ Ω(φ) , ∅

In the rest of the paper, we assume we have at most a single alarm at a partitioning index and hence

use partitioning index and alarm interchangeably; alarm φ means the one at the trace partitioning

index φ.
The alarm φ is a false alarm when the static analyzer reports the alarm but the concrete semantics

does not involve any error states at φ:

[[P]]/δ (φ) ∩ Ω(φ) = ∅

Otherwise, i.e., [[P]]/δ (φ) ∩ Ω(φ) , ∅, the alarm is true.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:9

Alarm Dependences. Our goal is to find logical dependencies between alarms. The ideal,

concrete dependencies between alarms can be defined as follows. Given two alarms φ1 and φ2, φ2

has a dependence on φ1 if φ2 is always false whenever φ1 is false, i.e.,

[[P]]/δ (φ1) ∩ Ω(φ1) = ∅ =⇒ [[P]]/δ (φ2) ∩ Ω(φ2) = ∅.

Note that the concrete dependence of φ2 on φ1 leads to another dependence as contraposition:

[[P]]/δ (φ2) ∩ Ω(φ2) , ∅ =⇒ [[P]]/δ (φ1) ∩ Ω(φ1) , ∅

That is, if φ2 is a true alarm, so is φ1.

However, because it is in general impossible to find all of such concrete dependencies, our goal

is to find abstract dependencies that are sound with respect to the concrete dependencies. That

is, we aim to find a subset of the concrete dependencies. Our idea is to use a sound refinement by

refutation; if we can kill the alarm φ2 from the abstract semantics refined under the assumption

that alarm φ1 is false, it means that φ2 has concrete dependence on φ1.

We will describe a simple example that conveys the idea.

Example 3.2 (Abstract alarm dependence). Suppose that an interval domain-based analyzer reports

two buffer-overflow alarms in the following code (alarms are underlined, and the values of variables

in intervals are annotated in comments).

int foo(int* buf, int i) { // buf.size = [11, 21], i = [0, +oo]
φ1 : buf[i] = 10;
φ2 : int j = i / 2; // j = [0, +oo]
φ3 : return buf[j];
}

Under the assumption that alarm φ1 is false, i at φ1 holds [0, 20] after using a sound refinement by

refutation. Note that we consider an underapproximation of the erroneous states at φ1 to guarantee

the soundness of the refinement. After the refinement, j at φ3 holds [0, 10], which does not overflow

buf. We may conclude φ2 has concrete dependence on φ1. That is, if φ1 is a false alarm, so is φ2. Also,

if φ2 is a true alarm, so is φ1. The soundness is guaranteed by our alarm clustering framework. □

In the rest of the section, we define the notion of sound refinement by refutation and abstract

alarm dependence. Then, we define alarm clustering based on the abstract alarm dependence.

3.3 Computing Alarm Dependences
Refinement by Refutation. Our key idea for computing the alarm dependence is refinement

by refutation; we refine the original fixpoint with the assumption that an alarm is false, and then

propagate that information to see which other alarms are filtered out as the consequence of the

refinement.

Our alarm clustering framework requires the following:

• ˆ
[[P]] : Φ→ ˆS: the abstract semantics of program P , i.e., the analysis result.

• Ω̂ : Φ→ ˆS, an underapproximation of the erroneous states, i.e.,

∀φ ∈ Φ. Ω̂(φ) ⊑ αS (Ω(φ))

where Ω : Φ→ ℘(S) specifies erroneous states at each partitioning index.

• ⊖̂ :
ˆS × ˆS→ ˆS: an abstract slice operator such that it is sound with respect to the concrete

slicing:

αS ◦ ⊖ ⊑ ⊖̂ ◦ αS×S

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:10 W. Lee et al.

where ⊖ : ℘(S) × ℘(S) → ℘(S) is the concrete slicing operator defined as the set difference,

i.e., S1 ⊖ S2 = S1 \ S2. We require that the abstract domain
ˆS comes with a meet operator (⊓)

and a sound abstract slice operator (⊖̂). In Section 5, we describe abstract slice operators of

the interval, octagon, and symbolic domains.

Given an alarm φ, our alarm clustering method works in the following three steps:

(1) We slice out the erroneous states at φ from the original fixpoint
ˆ

[[P]]:

ˆ
[[P]]¬φ = ˆ

[[P]][φ 7→ ˆ
[[P]](φ) ⊖̂ Ω̂(φ)]

Here,
ˆ

[[P]]¬φ denotes the resulting sliced abstract semantics, which is the same as the original

fixpoint
ˆ

[[P]] except that an underapproximation of the erroneous states at partitioning index

φ is sliced out. This step corresponds to assuming that the alarm φ is false.

(2) Next, we propagate the refined information through the program. This is done by computing

the following “narrowing” operation with the abstract semantic function F̂ of the target

program:

˜
[[P]]φ = fix#λZ . ˆ

[[P]]¬φ ⊓ F̂ (Z)

where fix# is a fixpoint operator. ˜
[[P]]φ denotes the final analysis result where the information

about φ being false is propagated along the entire program.

(3) We conclude that alarms that disappear from
˜

[[P]]φ has abstract alarm dependence on φ. This
step will be formalized shortly (Definition 1).

Example 3.3. Consider the program in Example 3.2. The abstract value of i at φ1 from the original

fixpoint
ˆ

[[P]] is [0,+∞]:
ˆ

[[P]](φ1) (i) = [0,+∞]

Under the assumption that alarm φ1 is false, an underapproximation of the erroneous state satisfies

the following:

Ω̂(φ1) (i) = [21,+∞]

Here the slice operator ⊖̂ simply rules out the erroneous interval from the original one for each

variable in the abstract state: (
ˆ

[[P]](φ1)⊖̂Ω̂(φ1)
)
(i) = [0, 20]

After slicing out the erroneous state, the sliced abstract semantics satisfies the following (Step 1):

ˆ
[[P]]¬φ1

(φ1) (i) = ˆ
[[P]][φ1 7→

ˆ
[[P]](φ1) ⊖̂ Ω̂(φ1)](φi) (i) = [0, 20]

The refined state is propagated through the program by the narrowing operation and then the

abstract value of j at φ3 after the refinement is as follows (Step 2):

˜
[[P]]φ1

(φ3) (j) = [0, 10]

Finally we observe that the alarm at φ3 disappears by assuming the alarm at φ1 to be false (Step

3). □

It is easy to extend this refinement algorithm to the case of refuting multiple alarms. Suppose

that we assume that set
−→φ of alarms is false. The refinement

˜
[[P]]−→φ of the fixpoint

ˆ
[[P]] with respect

to these assumptions is,

˜
[[P]]−→φ = fix#λZ . ˆ

[[P]]
¬
−→φ ⊓ F̂ (Z)

where
ˆ

[[P]]
¬
−→φ =

d
φi ∈−→φ

ˆ
[[P]]¬φi .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:11

Abstract Alarm Dependence. We now define abstract alarm dependence based on the refine-

ment by refutation. The dependence between alarm φ1 and φ2, written as φ1 ⇝ φ2 denotes that

alarm φ2 has abstract dependence on alarm φ1.

Definition 1 (φ1 ⇝ φ2). Given two alarms φ1 and φ2, φ2 has an abstract dependence on φ1, iff the
refinement ˜

[[P]]φ1

by refuting φ1 kills φ2; i.e.

φ1 ⇝ φ2 iff γS (˜
[[P]]φ1

(φ2)) ∩ Ω(φ2) = ∅.

The following lemma shows that the abstract alarm dependence is sound with respect to the

concrete dependence:

Lemma 1. Given two alarms φ1 and φ2, if φ1 ⇝ φ2, then φ2 is false whenever φ1 is false.

Proof. We show the refinement by refutation of alarm φ1 (i.e.,
˜

[[P]]φ1

) still soundly approximates

the concrete semantics (i.e., α ([[P]]) ⊑ ˜
[[P]]φ1

) if alarm φ1 is false. Then, we can conclude alarm φ2

if the refinement removes alarm φ2 because the refinement is sound with respect to the concrete

semantics. We prove the lemma by induction and the soundness of abstract slice operator. The

details are available in Appendix. □

As a contraposition of Lemma 1, we also have a different sense of soundness of abstract alarm

dependence.

Corollary 1. Given two alarms φ1 and φ2, if φ1 ⇝ φ2, then alarm φ1 is true whenever alarm φ2

is true.

We extend the definition and lemma of the abstract dependence for multiple alarms. The alarm

dependence in Example 1.3 is the example of such dependencies.

Definition 2 (
−→φ ⇝ φ0). Given set −→φ of alarms and alarm φ0, we write −→φ ⇝ φ0, and say that φ0

has abstract dependence on set −→φ , iff the refinement ˜
[[P]]−→φ by refuting set −→φ of alarms satisfies

γS (˜
[[P]]−→φ (φ0)) ∩ Ω(φ0) = ∅.

Lemma 2. Given set −→φ of alarms and alarm φ0, if −→φ ⇝ φ0, then alarm φ0 is false whenever all
alarms in −→φ are false.

Proof. The proof is similar to the proof of Lemma 1 except that we refute multiple alarms. The

details are available in Appendix. □

In fact, the contraposition of Lemma 2 is not quite useful since it specifies only some alarms among

set
−→φ of alarms are true when alarm φ0 is true.

3.4 Alarm Clustering
Alarm Cluster. Using abstract alarm dependencies, we can build false and true-alarm clusters.

Suppose that we are given a set of dominant alarms
−→φ (how to choose such dominant alarms will

be discussed in the next section), the false-alarm cluster is defined as follows:

Definition 3 (False-Alarm Cluster). Let A be set of all alarms in program P and ⇝ be
the abstract dependence relation. A false-alarm cluster CF−→φ ⊆ A with its dominant alarms −→φ is

{φ ′ ∈ A | −→φ ⇝ φ ′}.

The soundness of alarm cluster is directly implied by the soundness of abstract alarm dependence.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:12 W. Lee et al.

Theorem 1. Every alarm in CF−→φ is false whenever all alarms in −→φ are false.

Proof. Immediate from Lemma 2. □

Now we define the true-alarm cluster as follows:

Definition 4 (True-Alarm Cluster). Let A be set of all alarms in program P and⇝ be the
abstract dependence relation. A true-alarm cluster CTφ ⊆ A with its dominant alarm φ is {φ ′ ∈ A |
φ ′ ⇝ φ}

Note that true-alarm clusters are only derived from a single alarm dependence such as φ ′ ⇝ φ.
Multiple dependencies, such as

−→φ0 ⇝ φ, are not useful to construct true alarm clusters because the

dependencies just mean that one of the alarms in
−→φ0 is true then the dominant alarm is true. This

judgement does not tell us exactly which alarms among set
−→φ0 are true. For example, if the alarm at

line 9 is true in Example 1.3, our framework just guarantees that one of the alarms at line 3 or 4 is

true. For this reason, we only consider single alarm dependencies.

Given a dominant alarm φ, the soundness of a true-alarm cluster are defined as follows:

Theorem 2. Every alarm in CTφ is true whenever alarm φ is true.

Proof. Immediate from Corollary 1. □

From this point, we only focus on false-alarm clusters for two reasons. First, both type of clusters

can be found from the same dependence relation, so whether to make true or false alarm is simply

the matter of interpretation. Second, true-alarm clusters can exploit fewer dependencies than

false-alarm cluster, thus they cluster less alarms. In the rest of the paper, a cluster C−→φ means a

false-alarm cluster CF−→φ
.

3.5 Final Alarm Report
Suppose that we are given a set A of alarms reported by a static analyzer. We can partition A into

two disjoint sets, groupable (G) and ungroupable (U) alarms:

A = G ⊎ U .

We say an alarm φ ′ is groupable if φ ′ can be clustered by some dominant alarms (
−→φ):

G = {φ ′ ∈ A | ∃−→φ ⊆ A. φ ′ ∈ C−→φ }

and the ungroupable alarms are those that cannot be clustered by our method no matter how the

dominant alarms are chosen:

U = {φ ′ ∈ A | ∀−→φ ⊆ A. φ ′ < C−→φ }.

Ungroupable alarms exist because i) the power of the underlying abstract domain of the clustering

analysis is not sufficient to detect alarm dependences for them, or ii) abstract slice operator is

imprecise. For example, suppose that analysis developer specifies abstract slice operator does not

slice out any abstract states. Although such operator is sound, every alarm would be ungroupable

with the operator.

Given a set of alarms
−→φ that dominates all groupable alarms (i.e., C−→φ = G), the final alarm reports

that users have to examine is as follows:

−→φ ∪ U (1)

Instead of inspecting all of the groupable alarms G, our technique allows the users to inspect only

the dominant alarms, plus potentially unclustered ones (U).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:13

Example 3.4 (Final alarm report). Suppose we cluster alarms in the following example using the

interval domain.

// a.size = [10, 10] and i = [0, +oo]
φ1 : a[i] = ...;
φ2 : ... = a[i];

// b.size = [10, 10] and j = [0, +oo]
φ3 : b[j] = ...;
φ4 : ... = b[j];

// c.size = [10, +oo] and k = [0, +oo]
φ5 : c[k] = ...;

Alarms φ1,φ2,φ3, and φ4 are groupable because

Cφ1
= {φ1,φ2} Cφ3

= {φ3,φ4}.

On the other hand, the remaining alarm φ5 is ungroupable since the alarm is not dominated even

by itself. Because both the value of c.size and k involve +∞, the alarm cannot be soundly refuted

using the interval domain. If we use richer domains such as the octagon that can express linear

inequalities, φ5 can be refuted as k < c.size, so is groupable.

In this example, it is sufficient for users to inspect φ5, which is ungroupable, and φ1,φ3, which

dominates all groupable ones (i.e., Cφ1,φ3
= {φ1,φ2,φ3,φ4} = G). The example suggests that

although there are multiple clusters, each of which owns its dominant alarms, user only has to

inspect dominant alarms of the largest cluster that comprises all groupable alarms. □

4 ALARM-CLUSTERING ALGORITHMS
In this section, we show how to find the set of dominant alarms (

−→φ). The alarm-clustering framework

ensures that, given a set of dominant alarms
−→φ , the refutation method produces sound alarm clusters

(Theorem 1 and 2). However, how to find a good set of dominant alarms is absent in the framework.

We present two algorithms, which have different trade-offs between the cost and the number of

final alarm reports. The first algorithm, presented in Section 4.1, guarantees to find a set of minimal
dominant alarms: the set dominates all groupable alarms and does not contain unnecessaries.

However, the algorithm’s running time is proportional to the number of alarms to cluster. On

the other hand, the algorithm in Section 4.2 quickly finds a dominant alarm set regardless of the

number of alarms. Instead, the set found is not guaranteed to be minimal.

4.1 Algorithm 1: Finding Minimal Dominant Alarms
The first algorithm finds minimal dominant alarms so that minimize the number of final alarms (1)

for users to inspect. The set of minimal dominant alarms is defined as follows:

Definition 5 (Minimal Dominant Alarms). Given a set of alarms A and groupable alarms
G ⊆ A, we say −→φ is a minimal set of dominant alarms if
(1)
−→φ clusters all groupable alarms, i.e., C−→φ = G, and

(2)
−→φ is a minimal such set, i.e., ∀−→φ ′ ⊆ A. C−→φ ′ = G ∧

−→φ ⊆ −→φ ′ =⇒ −→φ = −→φ ′

After finding such a set of minimal dominant alarms
−→φ , the final alarm reports for users to inspect

is
−→φ ∪U .

Basic Algorithm. We utilize existing algorithms that are initially developed for finding minimal

abstractions [23]. They proposed algorithm ScanCoarsen to find a program abstraction that are

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:14 W. Lee et al.

Algorithm 1 Algorithm for finding groupable and ungroupable alarms.

1: procedure Categorize(ˆ
[[P]], A)

2: ⟨U ,G⟩ := ⟨∅, ∅⟩ ▷ ungroupable and groupable alarms
3: for all c ∈ A do
4: if γS (˜

[[P]]A (c)) ∩ Ω(c) , ∅ then
5: U := U ∪ {c}
6: end if
7: end for
8: G := A −U

9: return ⟨U ,G⟩
10: end procedure

minimal yet sufficient to prove target queries. We adapt their idea to the problem of finding a

minimal set of dominant alarms. Below, we explain our adaptation of the algorithms.

Let F : ℘(A) → {0, 1} be the clustering analysis defined as follows:

F(−→φ) = (C−→φ = G)

which gives 1 if the false alarm cluster (Definition 3) with the dominant alarms
−→φ is equivalent to

the set of groupable alarms, and 0 otherwise. The following lemma and corollary show that F is

monotone, which is a requirement of the algorithms in [23]:

Lemma 3.
−→φ ⊆ −→φ ′ =⇒ C−→φ ⊆ C−→φ ′

Proof. Available in Appendix. □

Corollary 2.
−→φ ⊆ −→φ ′ =⇒ F(−→φ) ≤ F(−→φ ′).

Our goal is to find a minimal
−→φ such that F(−→φ) = 1. We first need to partition A into groupable

and ungroupable alarms. The following corollary provides an algorithm to find out ungroupable

alarms:

Corollary 3. U = {φ ∈ A | φ < CA }

The Corollary 3 means that alarm φ is ungroupable if we cannot cluster it using the entire set of

alarms (A) as dominant alarms. Thus, we can findU by computing CA . The groupable alarms are

computed simply by G = A \U . This method is given in Algorithm 1.

Algorithm 2 presents ScanCluster that finds a minimal set of dominant alarms. The invariant

of the algorithm is that L contains alarms that are necessary to cluster all the groupable alarms and

U is an over-approximation of the minimal set to find. The algorithm starts with ScanCluster(∅,

A). We repeatedly remove an alarm φ fromU \ L if φ is unnecessary to cluster all groupable alarms

(line 5). If the current dominant alarms no longer cluster all the groupable alarms, we put φ ′ back
to the dominant alarm set (line 7). The algorithm requires |A| calls to F and the following theorem

shows the correctness of the algorithm.

Theorem 3. The algorithm ScanCluster(∅,A) returns a minimal set of dominant alarms.

Proof. Similar to the proof of Theorem 1 in [23]. □

Example 4.1 (Minimal Algorithm). Consider the following code, which is a simplified version of

the example in Section 2, and suppose an interval domain-based analyzer reports a set of alarms

A = {φ1,φ2,φ3,φ4} because of the unknown input before the loop.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:15

Algorithm 2 Clustering via Scanning

1: procedure ScanCluster(L,U)

2: if L = U then returnU
3: end if
4: choose φ ∈ U \ L
5: if F(U \ {φ}) = 1 then ▷ try removing φ
6: return ScanCluster(L,U − {φ}) ▷ φ is not necessary
7: else
8: return ScanCluster(L ∪ {φ},U) ▷ φ is necessary
9: end if
10: end procedure

// a.size=7
sum = 0;
i = read(); // i = [−∞,+∞]

while (...) {
φ1 : sum += a[i-1];
φ2 : sum += a[i+2];
φ3 : sum += a[i-2];
φ4 : sum += a[i+1];
}

The minimal algorithm begins with refuting all alarms. We find CA = A because it suppresses

all alarms for the following reasoning. First, we slice out the erroneous states for each alarm. The

values of i at each alarm point are as follows:

ˆ
[[P]]¬φ1

(φ1) (i) = [1, 7]
ˆ

[[P]]¬φ2

(φ2) (i) = [−2, 4]
ˆ

[[P]]¬φ3

(φ3) (i) = [2, 8]
ˆ

[[P]]¬φ4

(φ4) (i) = [−1, 5]

Next, we propagate the refined states through the program and identify the following invariant:

∀φ ∈ A. ˜
[[P]]A (φ) (i) = [2, 4]

Finally, all the alarms disappear with
˜

[[P]]A that implies CA = A.

Now the algorithm removes dominant alarms one by one to remove redundant ones. The

following table represents each iteration of procedure ScanCluster in Algo. 2.

iter L U φ F(U \ {φ})
1 ∅ {φ1,φ2,φ3,φ4} φ1 1

2 ∅ {φ2,φ3,φ4} φ2 0

3 {φ2} {φ2,φ3,φ4} φ3 0

4 {φ2,φ3} {φ2,φ3,φ4} φ4 1

5 {φ2,φ3} {φ2,φ3} - -

The algorithm ends with L = U = {φ2,φ3}. Thus, we conclude φ2 and φ3 dominate all alarms (i.e.,

C{φ2,φ3 } = A). □

There is also anothermethodActiveCoarsen that applies randomization into ScanCoarsen [23],

but the algorithm is not effective in our case. The key idea behind the algorithm is to remove

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:16 W. Lee et al.

random multiple alarms each iteration, as opposed to ScanCoarsen that removes a single alarm at

a time. Thus, we may need less iterations. However, it is effective only if a small subset of alarms

matters for clustering all groupable alarms. In other words, minimal dominant alarms should be

sparse. In ActiveCoarsen, the expected number of calls to F is O (s log |A|) where s is the size of
the largest minimal set of dominant alarms. If minimal dominant alarms are dense, the number of

calls becomes close to O (|A| log |A|), which is greater than |A| calls to F in ScanCluster. For

this reason, our clustering algorithm is only based on ScanCoarsen.

Further Optimization. We further improve ScanCluster by considering only refutable alarms

candidates of dominant alarms. Let R be the set of refutable alarms (Let T̂ ∈ Φ→ ˆS be the analysis
result):

R = {φ ∈ A | T̂ (φ) ⊖̂ Ω̂(φ) < T̂ (φ)}

We say an alarm φ is refutable if some erroneous states at φ can be sliced out in the underlying

abstract domain. It means that only refutable alarms have possibilities to dominate other alarms.

Therefore, we exclude non-refutable alarms from the initial set of alarms (A) in running ScanClus-

ter. That is, we run ScanCluster(∅, R) instead of ScanCluster(∅, A). Note that refutable alarms

are independent from the dichotomy between groupable and ungroupable alarms; both groupable

and ungroupable alarms may contain refutable alarms. For instance, alarm φ1 in Example 3.2 is

ungroupable and refutable. The following lemma shows that we can safely exclude alarms not

refutable in searching for minimal dominant alarms.

Lemma 4. If an alarm φ is not refutable (i.e., T̂ (φ) ⊖̂ Ω̂(φ) = T̂ (φ)), φ is not included in any set of
minimal dominant alarms.

Proof. Suppose a dominant alarm set
−→φ clusters all groupable alarms, i.e., C−→φ = G, and φ ∈

−→φ .

Let
−→φ ′ = −→φ \ {φ}. Then, ˆ

[[P]]
¬
−→φ =

ˆ
[[P]]

¬
−→φ ′ (∵ T̂ (φ) ⊖̂ Ω̂(φ) = T̂ (φ)). Therefore, ˜

[[P]]−→φ =
˜

[[P]]−→φ ′ and

C−→φ = C−→φ ′ , which means
−→φ ′ is not minimal. To conclude, φ is not included in any set of minimal

dominant alarms. □

In our experiment, we have observed a significant performance boost by considering refutable

alarms only. In 14 benchmark programs, 32% of total alarms were not refutable. Thus, ScanCluster

algorithm becomes approximately 1.5x (1/0.68) faster than non-optimized.

4.2 Algorithm 2: Non-Minimal but Efficient
In this section, we present a more appropriate clustering algorithm in case we have limited time

budgets. This algorithm is more efficient than the other one as it finds a subset of all abstract alarm

dependences by a single fixpoint computation. By contrast, the algorithm in Section 4.1 requires

to run the analysis multiple times. The idea is to refine the analysis result as much as possible by

refuting all alarms and track which dominant alarm candidate possibly kills which alarm. Then, we

cluster the alarms which must be killed by the same dominant alarm candidate.

Algorithm 3 describes our method that clusters alarms based on a (not all) subset of possible

dependencies.

We first describe the setting which the algorithm is based on. We assume that a program is

represented by a control-flow graph. Φ is the set of nodes (or program points) and every node

has several predecessors and successors specified by function pred and succ (line 2). The analyzer
computes a fixpoint table

ˆ
[[P]] ∈ Φ→ ˆS that maps each node in the program to its output abstract

memory state. The map is defined by the least fixpoint of the following function:

F̂ : (Φ→ ˆS) → (Φ→ ˆS)

F̂ (ˆ
[[P]]) = λφ. ˆf (φ) (

⊔
p∈predof (φ)

ˆ
[[P]](p))

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:17

Algorithm 3 Clustering algorithm

1: w ∈ Work = Φ W ∈ Worklist = 2
Work

2: pred ∈ Predecessors = Φ→ 2
Φ

3: succ ∈ Successors = Φ→ 2
Φ

4:
ˆf ∈ Φ→ ˆS→ ˆS ▷ abstract transfer function for each program point

5: T ∈ Table = Φ→ ˆS ▷ abstract state indexed by program point
6:
−→φ ∈ DomCand = 2

Φ ▷ dominant alarm candidate. set of alarms.
7: R ∈ RefinedBy = Φ→ DomCand ▷ {φ 7→ −→φ } ∈ R : T(φ) is refined by −→φ
8: Ω̂ ∈ ErrorInfo = Φ→ ˆS ▷ abstract erroneous state information
9: C ∈ Clusters = DomCand → 2

Φ ▷ alarm clusters indexed by dominant alarms
10: procedure FixpointIterate(W ,T ,R)
11: repeat
12: φ := choose(W) ▷ pick a work from worklist
13: ŝ := T (φ) ▷ previous abstract state
14: ŝ ′ := ˆf (φ) (

⊔
φi ∈pred(φ) T (φi)) ▷ new abstract state

15: ŝnew := ŝ ′ ⊓ ŝ
16:

17:
−→φ := R (φ) ▷ previous set of dominant alarm candidates

18:
−→φ ′ :=

⋃
φi ∈pred(φ) R (φi) ▷ new set of dominant alarm candidates

19: if ŝ = ŝ ′ then −→φ new =
−→φ ′

20: else if ŝ ⊑ ŝ ′ then −→φ new =
−→φ

21: else −→φ new := −→φ ∪ −→φ ′

22: if ŝnew < ŝ then ▷ propagate the change to successors

23: W :=W ∪ succ(φ); T (φ) := ŝnew ; R (φ) := −→φ new

24: untilW = ∅
25: procedure ClusterAlarms(T ,R)
26: for all φ ∈ Φ do
27: if T (φ) ⊓ Ω̂(φ) = ⊥ then
28: C := C{R (φ) 7→ C (R (φ)) ∪ {φ}}

29: procedure main()
30: T := ˆ

[[P]]¬Φ ▷ ˆ
[[P]] is the original fixpoint

31: R := {φ 7→ {φ} | φ ∈ Φ}
32: FixpointIterate(Φ,T,R)
33: ClusterAlarms(T,R)

where
ˆf (φ) is an abstract transfer function at node φ. For brevity, we also assume that an alarm

can be raised at every program point; i.e. for all φ ∈ Φ, Ω̂(φ) , ⊥ where Ω̂ is abstract erroneous

information such that (Ω̂ ⊑ αS ◦ Ω) (line 8).
Our algorithm works in the following way:

• We start by assuming that each alarm is a dominant alarm of a cluster including only itself.

This can be expressed by slicing out the erroneous states at every alarm point but not

propagating refinement yet.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:18 W. Lee et al.

• From an alarm point, say φ1, we start building its cluster. We propagate its sliced, non-

erroneous abstract state to another alarm point say φ2 and see if the propagation further

refines the non-erroneous abstract state at φ2.

• If the propagated state is smaller than that at φ2, it means refuting φ1 will refute alarm φ2,

hence dependence φ1 ⇝ φ2 and thus we add φ2 to the φ1-dominating cluster.

• If the propagated state is larger than that at φ2, then dependence φ1 ⇝ φ2 is not certain

hence, instead of adding φ2 to the φ1-dominating cluster, we start building the φ2-dominating

cluster.

• If the propagated state is incomparable to that at φ2, then we pick both alarms as dominant

ones and start building the φ1-and-φ2-dominating cluster by propagating the slicing effect of

simultaneously refuting (i.e., taking the meet of refuting) both alarms.

From line 1 to 9, we give definitions used in the algorithm. Everything other than function R at

line 7 is trivially explained by the comment on the same line. Function R keeps the information of

dominant alarm candidate. As specified in the comment, if R (φ) = −→φ for some program point φ
and set

−→φ of dominant alarms, it means that the abstract state at φ is refined by some dominant

alarm candidate
−→φ , thus alarm φ can be a member of the

−→φ -dominating cluster. Line 31 shows that

function R initially maps each program point φ to a set that only contains itself, which means that

initially, alarm φ is the only member of the φ-dominating cluster.

Without considering gray-boxed parts, procedure FixpointIterate in the algorithm is a tra-

ditional fixpoint iteration to compute a pre-fixpoint of a decreasing chain. We pick a work from

worklist (line 12), compute a new abstract state (line 14 and 15), and propagate the change to

successors if the newly computed state is strictly less than the previous one (line 22). We repeat

this until no work remains. We start the fixpoint computation from the one obtained by refuting all

alarms (line 30).

Alongside the usual fixpoint computation, we iteratively compute the information R of dominant

alarm candidates. At line 17, we store the previous information of R at φ in
−→φ . At line 18, we update

that information as follows:

−→φ ′ =
⋃

φi ∈pred(φ)

R (φi).

That is, if φi is a predecessor of φ on the control-flow graph and φi is dominated by R (φi), then
φ is also dominated by R (φi). Gray-boxed parts from line 19 to line 21 show how the algorithm

tracks which dominant alarm candidates yield the refined abstract state ŝnew computed from the

new abstract state ŝ ′ and the previous one ŝ at line 15. If ŝ ′ is smaller than ŝ (line 19), ŝnew is the

same as ŝ ′ and thus
−→φ ′ is its dominant alarm candidates. The algorithm similarly handles the case

when ŝ is smaller than or equals to ŝ ′ (line 20). If ŝ and ŝ ′ are incomparable (line 21), the meet of the

two corresponds to the abstract state refined by refuting their dominant alarm candidates at the

same time. Therefore, the resulting dominant alarm candidates
−→φ new takes the union of

−→φ and
−→φ ′.

As the last step of the clustering algorithm, procedure ClusterAlarms validates the dominant

alarm candidates in R based on the refined fixpoint T and clusters alarms. For each alarm at φ, we
validate that the dominant alarm candidates R (φ) really dominates alarm φ by checking that the

refined abstract state T (φ) kills the alarm (line 27). If the alarm is killed, we put alarm φ to the

R (φ)-dominating cluster (line 28 and 29).

The following theorem guarantees the correctness of the algorithm.

Theorem 4. Algorithm 3 computes sound alarm dependences.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:19

Proof. We show that∀φ ∈ Φ.T (φ) = ˜
[[P]]R (φ) (φ) at line 27. Then abstract dependence R (φ) ⇝ φ

added at line 28 is sound as it is found only if
˜

[[P]]R (φ) (φ) ⊓ Ω̂(φ) = ⊥. The details are available in
Appendix. □

Example 4.2 (Heuristic Algorithm). Consider the same code in Example 4.1. The following table

represents each iteration of procedure FixpointIterate in Algo. 3. We begin with analyzing φ1.

iter φ ŝ (i) ŝ ′(i) ŝnew (i)
−→φ −→φ ′ −→φ new

1 φ1 [1, 7] [1, 7] [1, 7] φ1 φ1 φ1

2 φ2 [−2, 4] [1, 7] [1, 4] φ2 φ1 φ1,φ2

3 φ3 [2, 8] [1, 4] [2, 4] φ3 φ1,φ2 φ1,φ2,φ3

4 φ4 [−1, 5] [2, 4] [2, 4] φ4 φ1,φ2,φ3 φ1,φ2,φ3

5 φ1 [1, 7] [2, 4] [2, 4] φ1 φ1,φ2,φ3 φ1,φ2,φ3

6 φ2 [1, 4] [2, 4] [2, 4] φ1,φ2 φ1,φ2,φ3 φ1,φ2,φ3

7 φ3 [2, 4] [2, 4] [2, 4] φ1,φ2,φ3 φ1,φ2,φ3 φ1,φ2,φ3

Finally, this algorithm reports {φ1,φ2,φ3} as dominant alarms, i.e., C{φ1,φ2,φ3 } = A. Note that the

heuristic algorithm computes more dominant alarms than the minimal algorithm in Example 4.1.

But the heuristic algorithm each alarm node is visited twice during analysis whereas each alarm

node is visited four times in the minimal algorithm. □

5 INSTANCES
In this section, we show how to use our framework to design alarm clustering methods. We provide

three instances based on the interval, octagon, and symbolic domains. All of the methods are

implemented on top a realistic buffer-overflow analyzer for C programs [32]. The key component

we have to define to use our framework is the abstract slice operator described in Section 3.

We begin with a simple yet general definition of sound abstract slice operators. Assume that
ˆS

is the underlying abstract domain used in our clustering method, which has a Galois connection

℘(S) −→
←−
αS

γS
ˆS with concrete domain S. An element y in the domain

ˆS is called precisely comple-
mentable [10] if there is a precise complement y, a complement of y (i.e., y ⊓y = ⊥ˆS and y ⊔y = ⊤ˆS)

satisfying

γS (y) = ℘(S) \ γS (y).

Using the notion of precise complements, we define the following simple but general abstract slice

operator in
ˆS.

Definition 6 (Abstract slice operator). Let ˆS be an abstract domain defined by the Galois

connection ℘(S) −→
←−
αS

γS
ˆS. For x ,y ∈ ˆS, x ⊖ˆS y is defined as follows:

x ⊖ˆS y =

{
x ⊓ y if y is precisely complementable
x otherwise

where y is a precise complement of y.

In a powerset domain, every element is precisely complementable. Thus the operator is the same

as the set difference operator. Because we simply give up slicing ify is not precisely complementable,

the operator is a simple abstraction of the set difference.

The following theorem guarantees that the abstract operator in Definition 6 is sound.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:20 W. Lee et al.

Theorem 5. For an abstract domain ˆS with the Galois connection ℘(S) −→
←−
αS

γS
ˆS, the following

holds for all x ,y ∈ ˆS:

αS (γS (x) ⊖ γS (y)) ⊑ x ⊖ˆS y

Proof.

x ⊖ˆS y = x ⊓ y
⊒ αS ◦ γS (x) ⊓ αS ◦ γS (y) (αS ◦ γS ⊑ id)
⊒ αS (γS (x) ⊓ γS (y)) (αS is monotone and by def. of glb)

= αS (γS (x) ⊓ γS (y)) (y is precisely complementable)
= αS (γS (x) ⊖ γS (y)) (By def. of the set minus operator)

□

5.1 Setting: Baseline Analyzer
Now we describe a baseline analyzer Sparrow [32] on which our clustering methods are imple-

mented. The analyzer is a realistic buffer-overflow detector performing sound and inter-procedural

analysis. Sparrow basically performs a flow-sensitive and context-insensitive analysis with the

interval abstract domain. Sparrow performs a sparse analysis [29, 30] that scales to analyze up to

one million lines of C programs.

To simplify the presentation, we consider a simple language and a program property. Each

variable has an integer value in the simple language. The target program property we consider is

about size relationships between variables.

Program Representation. We assume that a program is represented by a control-flow graph.

Each command in a node (or program point) φ ∈ Φ in the graph has one of the following command,

denoted cmd(φ):

command c → x := e | {{x ≤ n}} | x := unknown()
expression e → n | x | e + e

An (side-effect-free) expression is either constant integer (n), binary operation (e + e), or variable
(x). The command x := e assigns the value of e into x. The command {{x ≤ n}} makes the program

continue only when the condition evaluates to true. The command x := unknown() assigns an

arbitrary integer into x. Edges are assembled by function predof ∈ Φ→ 2
Φ
, which maps each node

to its predecessors.

Collecting Semantics. Collecting semantics of a program P is an invariant [[P]]/δ : Φ→ ℘(S)
where δ is the final program point partitioning function described in Section 3. It represents a set

of reachable states at each program point, where the concrete domain of states S is the set of finite
maps from variables (Var) to integers (Z).

Abstract Semantics. In our analysis, the set of (possibly infinite) concrete memory states for

each program point are abstracted by an abstract memory state (
ˆSI = Var

fin

→ I), a finite map from

variables (Var) to interval values (I) that abstract a set of integers:

I = {⊥} ∪ {[l ,u] | l ∈ Z ∪ {−∞} ∧ u ∈ Z ∪ {+∞} ∧ l ≤ u}.

The pair of functions (αI,γI) forms a Galois connection: ℘(S) −→←−αI

γI
ˆSI.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:21

For each node, we define a transfer function
ˆfI : Φ→ ˆSI → ˆSI that, given an input memory state,

computes the effect of the assignment in the node on the input state:

ˆfI φ m̂ =



m̂[x 7→ ˆV (e) (m̂)] (cmd(φ) = x := e)
m̂[x 7→ m̂(x) ⊓ [−∞,n]] (cmd(φ) = {{x ≤ n}})
m̂[x 7→ [−∞,∞]] (cmd(φ) = x := unknown())

The effect of node {{x ≤ n}} is to confine the interval value of x according to the condition. The effect
of node x := e is to assign the abstract value of e into variable x . The effect of node x := unknown()
is to assign the top interval value into variable x . Given expression e and abstract memory state m̂,

auxiliary function
ˆV computes abstract values:

ˆV (e) :
ˆSI → ˆVal

ˆV (n) (m̂) = [n,n]
ˆV (e1 + e2) (m̂) = ˆV (e1) (m̂)+̂ ˆV (e2) (m̂)

ˆV (x) (m̂) = m̂(x)

We skip the conventional definition of the abstract binary (+̂) and join (⊔) operations in interval

domain.

The analyzer computes a fixpoint table
ˆ

[[P]]
I
∈ Φ→ ˆSI that maps each node in the program to its

output abstract memory state. The abstract memory state at each program point approximates all

the concrete memory states occurring at the node in the concrete executions. The map is defined

by the least fixpoint of the following function:

FI : (Φ→ ˆSI) → (Φ→ ˆSI)

FI (ˆ
[[P]]) = λφ. ˆfI φ (

⊔
p∈predof (φ)

ˆ
[[P]](p))

The fixpoint table
ˆ

[[P]]
I
is a sound approximation of the collecting semantics of the program, i.e.,

∀φ ∈ Φ.γI (ˆ
[[P]]

I
(φ)) ⊒ [[P]]/δ (φ)

Alarms. We define erroneous states and alarms of the static analysis. We assume queries, triples

in Q ⊆ Φ × Var × Var , are given as input to our static analysis. A query ⟨φ,x ,y⟩ represents an
assertion that x should be less than y at program point φ. Given a query, the set of erroneous states

is characterized by the following function:

Ω : Q → ℘(S)

Ω(φ,x ,y) = {s ∈ S | s (x) ≥ s (y)}

For given query ⟨φ,x ,y⟩, our analyzer raises an alarm ⟨φ,x ,y⟩ if γI (ˆ
[[P]]

I
(φ)) ∩ Ω(φ,x ,y) , ∅

meaning the query ⟨φ,x ,y⟩ cannot be proved.

5.2 Clustering using Interval Domain
We describe abstract slice operator of the interval domain. Suppose we have an alarm ⟨φ,x ,y⟩.
Recall that the refutation of the alarm is defined as follows:

ˆ
[[P]]

I

¬φ =
ˆ

[[P]]
I
[φ 7→ ˆ

[[P]]
I
(φ) ⊖̂ ˆSI

Ω̂(φ,x ,y)]

where Ω̂(φ,x ,y) is an underapproximation of the erroneous states such that Ω̂(φ,x ,y) ⊑ αSI (Ω(φ,x ,y)).
The reason for using an underapproximation is that the interval analysis often fails to capture

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:22 W. Lee et al.

relational properties of variables. The underapproximation of the erroneous states Ω̂(φ,x ,y) is
defined as follows:

Ω̂(φ,x ,y) =

{
⊥
ˆSI
[x 7→ [ymax ,+∞],y 7→ [−∞,ymin − 1]] (ymax ≥ xmin ,ymin , −∞,ymax , +∞)

⊥
ˆSI

(otherwise)

where [xmin ,xmax] = ˆ
[[P]]

I
(φ) (x) and [ymin ,ymax] = ˆ

[[P]]
I
(φ) (y). And the following is a precise

complement of Ω̂(φ,x ,y).

Ω̂(φ,x ,y) =

{
⊤
ˆSI
[x 7→ [−∞,ymax − 1],y 7→ [ymin ,+∞]] (ymax ≥ xmin ,ymin , −∞,ymax , +∞)

⊤
ˆSI

(otherwise)

Example 5.1. Consider the following code. The code is simply adapted from Example 1.3.

φ1 : sz := 64;
φ2 : f := unknown();
φ3 : t := unknown();
φ4 : sq := (f + t) / 2;

Suppose the following set of queries Q is given.

Q = {⟨φ2, f, sz⟩, ⟨φ3, t, sz⟩, ⟨φ4, sq, sz⟩}

The variable sz refers to the size of cboard and ephash in Example 1.3. We will show the steps of

deriving {φ2,φ3} ⇝ φ4.

The analysis result at φ4 is as follows:

ˆ
[[P]]

I
(φ4) = {sz 7→ [64, 64], f, t, sq 7→ [−∞,∞]}

The following are the underapproximation of the erroneous states.

Ω̂(φ2, f, sz) = ⊥ˆSI
[f 7→ [64,+∞], sz 7→ [−∞, 63]]

Ω̂(φ3, t, sz) = ⊥ˆSI
[t 7→ [64,+∞], sz 7→ [−∞, 63]]

And the following are the precise complements.

Ω̂(φ2, f, sz) = ⊤ˆSI
[f 7→ [−∞, 63], sz 7→ [64,∞]]

Ω̂(φ3, t, sz) = ⊤ˆSI
[t 7→ [−∞, 63], sz 7→ [64,∞]]

The sliced abstract semantics is:

ˆ
[[P]]

I

¬φ2

(φ2) = ˆ
[[P]]

I
(φ2) ⊖̂ ˆSI

Ω̂(φ2, f, sz) = ˆ
[[P]]

I
(φ2) ⊓ Ω̂(φ2, f, sz)

= {sz 7→ [64, 64], f 7→ [−∞, 63]}

ˆ
[[P]]

I

¬φ3

(φ3) = ˆ
[[P]]

I
(φ3) ⊖̂ ˆSI

Ω̂(φ3, t, sz) = ˆ
[[P]]

I
(φ3) ⊓ Ω̂(φ2, t, sz)

= {sz 7→ [64, 64], f 7→ [−∞,∞], t 7→ [−∞, 63]}

By propagating the refinement, we obtain

˜
[[P]]

I

{φ2,φ3 }
(φ4) = {sz 7→ [64, 64], f, t, sq 7→ [−∞, 63]}.

Finally, we derive {φ2,φ3} ⇝ φ4 because γI (˜
[[P]]

I

{φ2,φ3 }
(φ4)) ∩ Ω(φ4, sq, sz) = ∅. □

The soundness of the abstract slice operator is guaranteed by the following theorem:

Theorem 6. ∀φ ∈ Φ. γI (ˆ
[[P]]

I
(φ)) ⊖ Ω(φ,x ,y) ⊑ γI (ˆ

[[P]]
I
(φ) ⊖ˆSI

Ω̂(φ,x ,y))

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:23

Proof. We show Ω̂(φ,x ,y)) is an under-approximation of the erroneous states. By Theorem 5

and Ω̂(φ,x ,y)) is precisely complementable, we prove the theorem. The details are available in

Appendix. □

5.3 Clustering using Octagon Domain
Now we present another alarm clustering technique using the octagon abstract domain [28]

that captures relational properties between variables. Our octagon-based clustering find abstract

dependencies beyond the capability of the interval-based clustering. Octagon domain
ˆSO represents

a set of octagonal constraints of the form ±x ± y ≤ k where x ,y ∈ Var and k ∈ Z ∪ {+∞}. For

an octagon o ∈ ˆSO, oxy = k denotes an octagonal constraint y − x ≤ k . 1 The abstraction is

characterized by the following abstraction function αO:

αO : ℘(S) → ˆSO

αO (S) = ⊥ˆSO
if S = ∅(

αO (S)
)
xy
= max{s (y) − s (x) | s ∈ S } o.w

The abstract semantics is a fixpoint table
ˆ

[[P]]
O
∈ Φ→ ˆSO that maps each program point to a single

octagon. The map is defined by the least fixpoint of the following function:

FO : (Φ→ ˆSO) → (Φ→ ˆSO)

FO (ˆ
[[P]]) = λφ. ˆfO φ (

⊔
p∈predof (φ)

ˆ
[[P]](p))

where
ˆfO functions as the standard octagon transfer function for the abstract assignment or the

abstract test [28] according to an associated command.

For clustering with the octagon domain, we first transform the interval fixpoint table
ˆ

[[P]]
I
into

an octagon table
ˆ

[[P]]
O
that satisfies the following:(

ˆ
[[P]]

O
(φ)
)
xy
= sup{s (x) − s (y) | s ∈ γI (ˆ

[[P]]
I
(φ))}

The refutation of an alarm ⟨φ,x ,y⟩ is similarly defined.

ˆ
[[P]]

O

¬φ =
ˆ

[[P]]
O
[φ 7→ ˆ

[[P]]
O
(φ) ⊖̂ αO (Ω(φ,x ,y))]

Because the expressiveness power of octagons is good enough to represent the erroneous states,

we do not have to use an underapproximation, as opposed to the interval clustering. The precise

complement of the erroneous state αO (Ω(φ,x ,y)) is defined as follows:(
αO (Ω(φ,x ,y)))

)
i j
=

{
0 if i = y and j = x
+∞ o.w

The following is the precise complement of the erroneous state:(
αO (Ω(φ,x ,y))

)
i j
=

{
−1 if i = x and j = y
+∞ o.w

Example 5.2. Consider the following code, which has been slightly modified from Example 5.1.

φ1 : sz := unknown();
φ2 : f := unknown();
φ3 : t := unknown();
φ4 : sq := f;

1
For brevity, we only consider octagonal constraints of the following form: x − y ≤ k .

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:24 W. Lee et al.

Suppose we are given the same set of queries as in Example 5.1.

Q = {⟨φ2, f, sz⟩, ⟨φ3, t, sz⟩, ⟨φ4, sq, sz⟩}

Because the value of sz is unbounded, we cannot find any dependencies with the interval domain-

based clustering. But we can find φ2 ⇝ φ4 with the octagon domain.

Initial octagon table
ˆ

[[P]]
O
is ⊤Φ→ˆSO

because all the interval values would be unbounded. The

erroneous state at φ2 is as follows:(
αO (Ω(φ2, f, sz))

)
i j
=

{
−1 if i = f and j = sz
+∞ o.w

The sliced abstract semantics is:

ˆ
[[P]]

O

¬φ2

(φ2) = ˆ
[[P]]

O
(φ2) ⊖̂ ˆSO

(
αO (Ω(φ2, f, sz))

)
= ⊤ˆSO

⊓
(
αO (Ω(φ2, f, sz))

)
=
(
αO (Ω(φ2, f, sz))

)
By propagating the refinement, we obtain

(
˜

[[P]]
O

φ2

(φ4)
)
i j
=




−1 if i = f and j = sz
−1 if i = sq and j = sz
+∞ o.w

Finally, we derive φ2 ⇝ φ4 because γO (˜
[[P]]

O

φ2

(φ4)) ∩ Ω(φ4, sq, sz) = ∅. □

The soundness of the abstract slice operator is guaranteed by the following theorem.

Theorem 7. ∀φ ∈ Φ. αO (γO (ˆ
[[P]]

O
(φ)) ⊖ Ω(φ,x ,y)) ⊑ ˆ

[[P]]
O
(φ) ⊖ˆSO

αO (Ω(φ,x ,y))

Proof. By the fact that αO (Ω(φ,x ,y)) is precisely complementable and Theorem 5, the theorem

holds. □

5.4 Clustering using Symbolic Execution
In this subsection, we present a symbolic domain–based clustering. With a reasonable cost, we

perform intraprocedural symbolic execution to find abstract dependencies beyond the capability of

interval and octagon-based clustering.

We use a conventional symbolic domain [17]. The set of concrete memory states are abstracted

by a symbolic memory state
ˆSSE = 2

Guard× ˆMem
, where the memory state ˆMem = ˆAddr

fin

→ ˆVal is a
finite map from symbolic addresses (

ˆAddr) to symbolic values (
ˆVal):

ˆAddr = Var + Symbol
ˆVal = Z + ˆAddr + (ˆVal × Bop × ˆVal)

Guard = Guard ∧Guard + (ˆVal × Rel × ˆVal) + {true, false}

A guard (Guard) represents a path condition under which the current program point is reachable

from the function entry. Rel denotes a set of comparison operators (e.g., <). Guards may be

connected by logical operators (conjunction ∧). Symbols (Symbol) are used to indicate symbolic

values. A symbolic value can be a number (Z), or an address (ˆAddr), or a binary value (ˆVal×Bop× ˆVal).
Bop denotes a set of binary operator symbols.

The partial order between two symbolic memory states S1,S2 are defined as follows:

S1 ⊑ S2 ⇐⇒ ∀⟨д,m⟩ ∈ S1. ∃⟨д
′,m′⟩ ∈ S2. (д ∧

∧
z∈dom (m)

z =m(z)) =⇒ (д′ ∧
∧

z′∈dom (m′)

z ′ =m′(z ′))

Therefore, {⟨true, id⟩} is ⊤ˆSSE
where id = {l 7→ l | l ∈ ˆAddr}.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:25

The abstract semantics is a fixpoint table
ˆ

[[P]]
SE
∈ Φ → ˆSSE that maps each program point

to a symbolic memory state. The map is defined by the greatest fixpoint of function FSE (i.e.,

ˆ
[[P]]

SE
=

d

i ∈N
FSE

i (⊤Φ→ˆSSE
)) :

FSE : (Φ→ ˆSSE) → (Φ→ ˆSSE)

FSE (ˆ
[[P]]) = λφ. ˆfSE φ (

⊔
p∈predof (φ)

ˆ
[[P]](p))

where
ˆfSE is defined as follows:

ˆfSE φ S =



{⟨д, m̂[x 7→ [[e]](m̂)]⟩ | ⟨д, m̂⟩ ∈ S} (cmd(φ) = x := e)
{⟨д ∧ (x ≤ n), m̂⟩ | ⟨д, m̂⟩ ∈ S} (cmd(φ) = {{x ≤ n}})
{⟨д, m̂[x 7→ x]⟩ | ⟨д, m̂⟩ ∈ S} (cmd(φ) = x := unknown())

and the evaluation [[e]] of an expression e in a memory m̂ is defined as usual : [[n]](m̂) = n,
[[x]](m̂) = m̂(x), and [[e1 + e2]](m̂) = [[e1]](m̂) + [[e2]](m̂). We apply a simple widening operator to

ensure the termination of the analysis; changing a symbolic memory state to ⊤ˆSSE
after some k

iterations.

For clustering using symbolic execution, the interval analysis result is embedded in a program

control flow graph in the form of conditional commands. In other words, we add nodes associated

with assume commands into the control flow graph referring to the prior interval analysis result.

For example, for a program point φ and a variable x, suppose ˆ
[[P]]

I
(φ) (x) = [−∞, 3]. Then we

insert a node φ ′ such that cmd(φ ′) = {{x ≤ 3}} between φ and all nodes in predof (φ). We do this

because our symbolic execution and interval analysis have incomparable precision; for example,

the symbolic execution uses a widening operator that changes the unstable abstract states to ⊤

after a finite number of iterations of a loop. In such a case, we aim to improve the precision of the

symbolic execution by using the invariant obtained from the interval analysis.

The refutation of an alarm ⟨φ,x ,y⟩ on the fixpoint symbolic state is defined as follows:

ˆ
[[P]]

SE

¬φ =
ˆ

[[P]]
SE
[φ 7→ {⟨д ∧ x < y, m̂⟩ | ⟨д, m̂⟩ ∈ ˆ

[[P]]
SE
(φ)}]

After the refinement resulting in
˜

[[P]]
SE

φ , we check the validity of the following condition to

determine if another alarm, namely ⟨φ ′,x ′,y ′⟩, has been killed by the refutation:

∀⟨д, m̂⟩ ∈ ˜
[[P]]

SE

φ (φ ′). д ∧ (
∧

z∈dom (m̂)

z = m̂(z)) =⇒ x ′ < y ′

Example 5.3. Consider the following code (slightly modified from Example 5.1).

φ1 : sz := unknown();
φ2 : f := unknown();
φ3 : t := unknown();
φ4 : sq := (f + t) / 2;

Suppose we are given the same set of queries as in Example 5.1.

Q = {⟨φ2, f, sz⟩, ⟨φ3, t, sz⟩, ⟨φ4, sq, sz⟩}

Because the value of sz is unbounded, we cannot find any dependencies with the interval domain-

based clustering. In addition, because the command at φ4 is beyond the expressiveness power of

the octagon domain, we cannot find any dependencies with the octagon domain. But we can find

{φ2,φ3} ⇝ φ4 with the symbolic domain.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:26 W. Lee et al.

Table 1. The overall effectiveness.

Alarms % Reduc. Time(s)Program
B I S+I I +S B I S

nlkain-1.3 124 66 66 47% 0% 0.3 1.8 0.6

polymorph-0.4.0 21 15 14 29% 5% 0.1 0.01 0.01

ncompress-4.2.4 82 70 52 15% 22% 1.7 2.3 0.9

sbm-0.0.4 269 231 189 14% 16% 4.3 115.4 2.8

stripcc-0.2.0 190 132 110 31% 12% 3.1 3.4 0.5

barcode-0.9.6 416 355 287 15% 16% 3.3 7.0 3.5

129.compress 66 49 35 26% 21% 91.6 951.5 0.2

archimedes-0.7.0 119 24 24 80% 0% 16.6 19.5 2.8

man-1.5h1 287 234 191 18% 15% 31.4 59.7 1.5

gzip-1.2.4 390 325 294 17% 8% 15.6 91.0 5.7

combine-0.3.3 836 485 318 42% 20% 21.8 290.9 117.9

gnuchess-5.05 1040 427 329 59% 9% 67.4 2189.8 154.3

bc-1.06 730 482 337 34% 20% 50.6 1511.7 22.1

grep-2.5.1 948 819 811 14% 1% 35.6 216.9 0.1

TOTAL 5518 3714 3057 33% 12% 343.4 5460.9 313.1

B : Baseline analysis, I: Interval domain-based clustering,

S : Symbolic execution-based clustering.

The symbolic memory state at φ4 is:

ˆ
[[P]]

SE
(φ4) = {⟨true, id[sq 7→ (f + t)/2]⟩}

The refutation results of alarms φ2 and φ3 are as follows:

ˆ
[[P]]

SE

¬φ2

(φ2) = {⟨(f < sz), id⟩}

ˆ
[[P]]

SE

¬φ3

(φ3) = {⟨(t < sz), id⟩}

By propagating the refinement, we obtain

˜
[[P]]

SE

{φ2,φ3 }
(φ4) = {⟨(f < sz) ∧ (t < sz), id[sq 7→ (f + t)/2]⟩}

Finally, we find {φ2,φ3} ⇝ φ4 because the following holds:

(f < sz) ∧ (t < sz) ∧ (sq = (f + t)/2) =⇒ sq < sz

□

6 EXPERIMENTS
We apply our clustering methods on 14 packages from three different categories (Bugbench [7],

GNU softwares, and SourceForge open source projects). Table 1 shows the benchmark programs.

We implemented our alarm clustering technique on Sparrow [32], an industrial-strength static

buffer overrun detector for C programs. The baseline analyzer is flow-sensitive, field-sensitive, and

context-insensitive and uses the interval domain. The core semantics of the analyzer is described

in Section 5.1

Effectiveness. To evaluate how much our clustering can reduce the alarm-investigation effort,

we measure the number of distinct dominant alarms after clustering and compare it to the number

of original alarms reported by the baseline analysis. We apply interval domain-based clustering

and symbolic execution-based clustering. We do not employ octagon-based clustering because

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:27

in practice, symbolic execution-based approach finds alarm dependencies that are detectable by

octagon-based clustering with a cheaper cost. For instance, in our previous work [22], the octagon-

based clustering reduced 8% of alarms, but our new symbolic execution-based clustering reduces

12% with a smaller cost. We use the ScanCluster algorithm for interval domain-based clustering

and the heuristic algorithm for symbolic execution-based clustering because each of symbolic

executions requires significant overhead.

In Table 1, the column labeled “# Alarms” shows the numbers of alarms reported by the baseline

analyzer (B), after the clustering using the interval analysis (I), and after the clustering using both

the interval analysis and the symbolic execution (S+I), respectively. The next columns labeled “%
Reduc.” show the reduction ratios by the interval clustering (I) and the further reduction by the

symbolic-execution-based clustering (+S). As shown in Table 1, our method identifies 45% of the

alarms non-dominating. This reduction is in the number to be examined by the user.

We investigate the most effective and the least effective cases of the interval-based clustering.

Our interval domain-based algorithm turned out to be the most effective for archimedes-0.7.0

and gnuchess-5.05 (reduced by 80% and 59%) because of the following reasons. First, the sizes of

almost all buffers in the programs are fixed. In this case, we can slice out erroneous state accurately,

which is essential for the refinement by refutation using interval domain. Second, there were many

different buffers of the same size which are accessed using the same index variable. On the other

hand, our interval domain-based clustering is least effective for sbm-0.0.4 and grep-2.5.1 (reduced

by 14%). It is because almost all buffers in the program are dynamically allocated, thus the sizes of

them were hard to accurately track. Indeed, we found that the interval values of the buffer sizes

were, in most cases, [0,∞] which means the buffer can have arbitrary size. In this case, we cannot

slice out the erroneous states at all.

We also investigate effective cases of the symbolic execution-based clustering. Programs ncompress-

4.2.4, 129.compress, combine-0.3.3, and bc-1.06 contain many consecutive buffer accesses having

relationship of form

∑
i aixi ≤ c where each xi is a variable and c is a constant. This type of

relationship can be precisely expressed and handled by SMT solvers.

Clustering Overhead. We measure the analysis time to assess the overhead of clustering

analysis. All our experiments are performed on a Linux machine with a 2.8 GHz Intel Xeon

processor and 24 GB of memory. In Table 1, the columns labeled “Time” present times for the

baseline analysis (B) and the additional alarm clustering using interval domain (I) and symbolic

execution (S). For each benchmark, we repeat the experiment 10 times and average the running

time. The standard deviations do not exceed 7% of the average times.

The overhead of interval domain-based alarm clustering on average surpasses the baseline

analysis time because the ScanCluster algorithm checks whether each of alarms is dominating.

In spite of the significant overhead, we consider the interval-based clustering still practical because

manual investigation of each alarm often takes much more than about 3 seconds, which is the

amortized time for identifying a single alarm non-dominating.

On the other hand, the overhead of symbolic execution-based clustering is smaller than the

baseline analysis time by employing the heuristic algorithm and avoiding inter-procedural analysis.

Comparison Between the Two Clustering Algorithms. Furthermore, we investigate cost

and precision of a minimal clustering and the heuristic algorithms in the interval-based clustering.

As the minimal clustering algorithm, we adopt the ScanCluster algorithm.We expect the latter

algorithm to be cheaper than the former in programs with more sparse dominating alarms. Table 2

demonstrates the comparison. The columns labeled “H” show the number of dominant alarms,

the reduction ratios, and clustering time respectively when the heuristic algorithm is applied. The

columns labeled “M” presents the results when the minimal clustering algorithm is applied. The

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:28 W. Lee et al.

heuristic algorithm finds 12% less alarms non-dominating, but about 212x faster than the minimal

clustering algorithm.

Table 2. Comparison between the minimal and heuristic algorithms.

Alarms % Reduc. Time(s)Program LOC
B H M H M B H M

nlkain-1.3 831 124 104 66 16% 47% 0.3 0.06 2.4

polymorph-0.4.0 1357 21 16 15 24% 29% 0.1 0.01 0.02

ncompress-4.2.4 2195 82 71 70 14% 15% 1.7 0.2 2.6

sbm-0.0.4 2467 269 261 231 3% 14% 4.3 1.2 131.6

stripcc-0.2.0 2555 190 156 132 18% 31% 3.1 0.4 5.3

barcode-0.9.6 4460 416 361 355 13% 15% 3.3 0.5 16

129.compress 5585 66 58 49 12% 26% 91.6 0.4 1167.2

archimedes-0.7.0 7569 119 52 24 56% 80% 16.6 1.2 48.8

man-1.5h1 7232 287 244 234 15% 18% 31.4 4.8 99.3

gzip-1.2.4 11213 390 356 325 9% 17% 15.6 2.1 110.7

combine-0.3.3 11472 836 576 485 31% 42% 21.8 3.2 586.1

gnuchess-5.05 11629 1040 693 427 33% 59% 67.4 12.3 3842.1

bc-1.06 12830 730 640 482 12% 34% 50.6 8.9 1943.3

grep-2.5.1 31154 948 839 819 11% 14% 35.6 3.5 321.6

TOTAL 112549 5518 4438 3726 20% 32% 343.4 38.77 8277.02

B : Baseline analysis, H: The heuristic clustering algorithm using interval domain,

M : The minimal clustering algorithm using interval domain

7 RELATEDWORK
To the best of our knowledge, Le et al.’s work [21] is the first one that proposes non-statistical clus-

tering method. They reduce the number of faults (alarms) by detecting correlations (dependencies)

between them. By propagating the effects of the error state along the program path, they detect the

correlation of pairs of alarms. They automatically construct a correlation graph which shows how

faults are correlated. Based on the graph, we can reduce the number of faults to consider.

However, Le et al.’s method is not sound, while our method is sound. According to their experi-

ment results, the dependencies they use to construct the correlation graph can be spurious (false

positive), which means that it is not always safe to rule out faults even though they are correlated

to the others.

There is a large body of work on error cause localization related to our work. A lot of work on

locating the sources of type errors in higher-order languages with let-polymorphism [3, 6, 11, 15,

33, 34] identify the source of a type error in the form of program points. Our work is not limited

to locate the sources and, moreover, soundly clusters the alarms of the same origins. Error cause

localization techniques in model checkers [2, 12] also can be viewed as clustering algorithms. They

analyze the common and different features between erroneous and safe traces and provide succinct

and useful information about the error traces to the user.

Statistical ranking schemes [16, 19, 20] may help to find real errors quickly, but ranking schemes

do not reduce alarm-investigation burdens as in our work. Since our technique is orthogonal to

statistical ranking schemes, our technique can be combined with them for a more sophisticated

alarm reporting interface as proposed by Mangal et al [24].

Mangal et al. combine alarm clustering with statistical learning. They propose EUGENE that

allows user feedback to guide datalog analysis towards producing the desired output. User feedbacks

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:29

are about which analysis results an user dislikes (or likes). With the feedbacks, EUGENE derives

desired reports after re-running the analysis. To this aim, datalog rules are selectively applied to

suppress alarms the user dislikes. In this process, other similar alarms of the same origins are

also suppressed because they are dependent on the same intermediate tuples, which can be seen

as alarm clustering. Statistical learning plays a key role in selecting datalog rules to be applied.

Datalog rules and initial tuples are equipped with learned weights, and the analysis derives tuples

maximizing the sum of total weights. Therefore, this work can be considered a good combination

of alarm clustering and statistical learning.

Our work resembles that of Rival’s work [31] in the sense that both work refines the abstraction

by exploiting the information about error state. In his work, Rival refines the abstraction by slicing

out non-error states and sees if the initial state after refinement still insists that the erroneous

states are reachable. If the initial state becomes bottom after refinement, the alarm turns out to be

false. On the other hand, in our work, we refine the abstraction by slicing out erroneous states at

one point and see if erroneous states at other points become non-reachable, which means that we

found the dependence between alarms. The similarity also applies to Gogul’s work [1]. Similar to

Rival’s work, they refines the abstraction by slicing out non-error states and performing a sequence

of many forward and backward runs.

Our clustering method can be integrated with other refinement approaches [1, 4, 9, 13, 14, 18, 31].

Their goal is to remove false alarms by abstraction refinement, whereas our work seeks to reduce

the number of alarms to investigate. Our work can also reduce the number of targets to do the

refinement.

Our work is more general than error recovery techniques that are used for reducing false alarms

in many commercial static analysis tools [5, 25, 27]. For each alarm found, these commercial

analyzers recover from those alarms; i.e. whenever an alarm is found, they report the alarm, slice

the abstract erroneous states, and continues the fixpoint computation. On the contrary to the error

recovery techniques, we can use more expressive domain for clustering purpose than the one used

in the baseline (as shown in Section 5.4), which can be more precise or cost-effective. Additionally,

our method can derive true clusters which cannot be done by the above error recovery techniques.

8 CONCLUSION
We have presented a new, sound non-statistical alarm-clustering method. We proposed an abstract

interpretation–based framework of alarm-clustering, which is generally applicable to any semantics-

based static analyses. We formally proved the soundness of the framework, presented practical

algorithms to find the set of dominant alarms, provided three instance clustering algorithms (based

on interval, octagon, and symbolic domains), and showed that the combination of the interval and

symbolic clustering method considerably reduces the number of final alarm reports of a realistic C

static analyzer.

REFERENCES
[1] Gogul Balakrishnan, Sriram Sankaranarayanan, Franjo Ivančić, Ou Wei, and Aarti Gupta. 2008. SLR: Path-Sensitive

Analysis Through Infeasible-Path Detection and Syntactic Language Refinement. In Proceedings of the 15th International
Symposium on Static Analysis (SAS ’08). Springer-Verlag, Berlin, Heidelberg, 238–254. DOI:http://dx.doi.org/10.1007/
978-3-540-69166-2_16

[2] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From Symptom to Cause: Localizing Errors in Counterexample

Traces. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’03). ACM, New York, NY, USA, 97–105. DOI:http://dx.doi.org/10.1145/604131.604140

[3] Mike Beaven and Ryan Stansifer. 1993. Explaining Type Errors in Polymorphic Languages. ACM Lett. Program. Lang.
Syst. 2, 1-4 (March 1993), 17–30. DOI:http://dx.doi.org/10.1145/176454.176460

[4] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2013. Thresher: Precise Refutations for Heap Reachability.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

http://dx.doi.org/10.1007/978-3-540-69166-2_16
http://dx.doi.org/10.1007/978-3-540-69166-2_16
http://dx.doi.org/10.1145/604131.604140
http://dx.doi.org/10.1145/176454.176460

1:30 W. Lee et al.

In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13).
ACM, New York, NY, USA, 275–286. DOI:http://dx.doi.org/10.1145/2491956.2462186

[5] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,

and Xavier Rival. 2003. A Static Analyzer for Large Safety-critical Software. In Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation (PLDI ’03). ACM, New York, NY, USA, 196–207. DOI:
http://dx.doi.org/10.1145/781131.781153

[6] Olaf Chitil. 2001. Compositional Explanation of Types and Algorithmic Debugging of Type Errors. In Proceedings of
the Sixth ACM SIGPLAN International Conference on Functional Programming (ICFP ’01). ACM, New York, NY, USA,

193–204. DOI:http://dx.doi.org/10.1145/507635.507659
[7] Cristina Cifuentes, Christian Hoermann, Nathan Keynes, Lian Li, Simon Long, Erica Mealy, Michael Mounteney, and

Bernhard Scholz. 2009. BegBunch: Benchmarking for C Bug Detection Tools. In Proceedings of the 2Nd International
Workshop on Defects in Large Software Systems: Held in Conjunction with the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2009) (DEFECTS ’09). ACM, New York, NY, USA, 16–20. DOI:http://dx.doi.org/10.
1145/1555860.1555866

[8] Patrick Cousot and Rahida Cousot. 1992. Abstract Interpretation and Application to Logic Programs. J. Log. Program.
13, 2-3 (July 1992), 103–179. DOI:http://dx.doi.org/10.1016/0743-1066(92)90030-7

[9] P. Cousot, P. Ganty, and J.-F. Raskin. 2007. Fixpoint-Guided Abstraction Refinements. In Proceedings of the Fourteenth
International Symposium on Static Analysis, SAS ’07, G. Filé and H. Riis Nielson (Eds.). Springer, Berlin, Germany,

333–348.

[10] Vijay D’Silva, Leopold Haller, Daniel Kroening, and Michael Tautschnig. 2012. Numeric Bounds Analysis with

Conflict-driven Learning. In Proceedings of the 18th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’12). Springer-Verlag, Berlin, Heidelberg, 48–63. DOI:http://dx.doi.org/10.1007/
978-3-642-28756-5_5

[11] Dominic Duggan and Frederick Bent. 1995. Explaining Type Inference. In Science of Computer Programming. 37–83.
[12] Alex Groce and Willem Visser. 2003. What Went Wrong: Explaining Counterexamples. In Proceedings of the 10th

International Conference on Model Checking Software (SPIN’03). Springer-Verlag, Berlin, Heidelberg, 121–136. http:
//dl.acm.org/citation.cfm?id=1767111.1767119

[13] BhargavS. Gulavani and SriramK. Rajamani. 2006. Counterexample Driven Refinement for Abstract Interpretation. In

Tools and Algorithms for the Construction and Analysis of Systems, Holger Hermanns and Jens Palsberg (Eds.). Lecture

Notes in Computer Science, Vol. 3920. Springer Berlin Heidelberg, 474–488. DOI:http://dx.doi.org/10.1007/11691372_34
[14] Bhargav S. Gulavani, Supratik Chakraborty, Aditya V. Nori, and Sriram K. Rajamani. 2008. Automatically Refining

Abstract Interpretations. In Proceedings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg,
443–458.

[15] Gregory F. Johnson and Janet A. Walz. 1986. A Maximum-flow Approach to Anomaly Isolation in Unification-based

Incremental Type Inference. In Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL ’86). ACM, New York, NY, USA, 44–57. DOI:http://dx.doi.org/10.1145/512644.512649

[16] Yungbum Jung, Jaehwang Kim, Jaeho Shin, and Kwangkeun Yi. 2005. Taming False Alarms from a Domain-unaware C

Analyzer by a Bayesian Statistical Post Analysis. In Proceedings of the 12th International Conference on Static Analysis
(SAS’05). Springer-Verlag, Berlin, Heidelberg, 203–217. DOI:http://dx.doi.org/10.1007/11547662_15

[17] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. 2011. MeCC: Memory Comparison-based Clone

Detector. In Proceedings of the 33rd International Conference on Software Engineering (ICSE ’11). ACM, New York, NY,

USA, 301–310. DOI:http://dx.doi.org/10.1145/1985793.1985835
[18] Youil Kim, Jooyong Lee, Hwansoo Han, and Kwang-Moo Choe. 2010. Filtering False Alarms of Buffer Overflow Analysis

Using SMT Solvers. Inf. Softw. Technol. 52, 2 (Feb. 2010), 210–219. DOI:http://dx.doi.org/10.1016/j.infsof.2009.10.004
[19] Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson Engler. 2004. Correlation Exploitation in Error Ranking. In

Proceedings of the 12th ACM SIGSOFT Twelfth International Symposium on Foundations of Software Engineering (SIGSOFT
’04/FSE-12). ACM, New York, NY, USA, 83–93. DOI:http://dx.doi.org/10.1145/1029894.1029909

[20] Ted Kremenek and Dawson Engler. 2003. Z-ranking: Using Statistical Analysis to Counter the Impact of Static Analysis

Approximations. In Proceedings of the 10th International Conference on Static Analysis (SAS’03). Springer-Verlag, Berlin,
Heidelberg, 295–315.

[21] Wei Le and Mary Lou Soffa. 2010. Path-based Fault Correlations. In Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE ’10). ACM, New York, NY, USA, 307–316. DOI:
http://dx.doi.org/10.1145/1882291.1882336

[22] Woosuk Lee, Wonchan Lee, and Kwangkeun Yi. 2012. Sound Non-statistical Clustering of Static Analysis Alarms. In

Proceedings of the 13th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’12).
Springer-Verlag, Berlin, Heidelberg, 299–314. DOI:http://dx.doi.org/10.1007/978-3-642-27940-9_20

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

http://dx.doi.org/10.1145/2491956.2462186
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1145/507635.507659
http://dx.doi.org/10.1145/1555860.1555866
http://dx.doi.org/10.1145/1555860.1555866
http://dx.doi.org/10.1016/0743-1066(92)90030-7
http://dx.doi.org/10.1007/978-3-642-28756-5_5
http://dx.doi.org/10.1007/978-3-642-28756-5_5
http://dl.acm.org/citation.cfm?id=1767111.1767119
http://dl.acm.org/citation.cfm?id=1767111.1767119
http://dx.doi.org/10.1007/11691372_34
http://dx.doi.org/10.1145/512644.512649
http://dx.doi.org/10.1007/11547662_15
http://dx.doi.org/10.1145/1985793.1985835
http://dx.doi.org/10.1016/j.infsof.2009.10.004
http://dx.doi.org/10.1145/1029894.1029909
http://dx.doi.org/10.1145/1882291.1882336
http://dx.doi.org/10.1007/978-3-642-27940-9_20

Sound Non-Statistical Clustering of Static Analysis Alarms 1:31

[23] Percy Liang, Omer Tripp, and Mayur Naik. 2011. Learning Minimal Abstractions. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). ACM, New York, NY, USA,

31–42. DOI:http://dx.doi.org/10.1145/1926385.1926391
[24] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A User-guided Approach to Program Analysis. In

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY,

USA, 462–473. DOI:http://dx.doi.org/10.1145/2786805.2786851
[25] MathWorks. 2015. Polyspace Embedded Software Verification. (2015). http://www.mathworks.com/products/polyspace/

index.html.

[26] Laurent Mauborgne and Xavier Rival. 2005. Trace Partitioning in Abstract Interpretation Based Static Analyzers. In

Proceedings of the 14th European Conference on Programming Languages and Systems (ESOP’05). Springer-Verlag, Berlin,
Heidelberg, 5–20. DOI:http://dx.doi.org/10.1007/978-3-540-31987-0_2

[27] Microsoft. 2015. Code Contracts. (2015). http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx.

[28] Antoine Miné. 2006. The Octagon Abstract Domain. Higher Order Symbol. Comput. 19, 1 (March 2006), 31–100. DOI:
http://dx.doi.org/10.1007/s10990-006-8609-1

[29] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, Daejun Park, Jeehoon Kang, and Kwangkeun Yi. 2014. Global

Sparse Analysis Framework. ACM Trans. Program. Lang. Syst. 36, 3, Article 8 (Sept. 2014), 44 pages. DOI:http:
//dx.doi.org/10.1145/2590811

[30] Hakjoo Oh, Kihong Heo, Wonchan Lee, Woosuk Lee, and Kwangkeun Yi. 2012. Design and Implementation of Sparse

Global Analyses for C-like Languages. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’12). ACM, New York, NY, USA, 229–238. DOI:http://dx.doi.org/10.1145/2254064.
2254092

[31] Xavier Rival. 2005. Understanding the Origin of Alarms in ASTRÉE. In Proceedings of the 12th International Conference
on Static Analysis (SAS’05). Springer-Verlag, Berlin, Heidelberg, 303–319. DOI:http://dx.doi.org/10.1007/11547662_21

[32] ROPAS. 2017. The Sparrow Static Analyzer. (2017). https://github.com/ropas/sparrow.

[33] F. Tip and T. B. Dinesh. 2001. A Slicing-based Approach for Locating Type Errors. ACM Trans. Softw. Eng. Methodol.
10, 1 (Jan. 2001), 5–55. DOI:http://dx.doi.org/10.1145/366378.366379

[34] Mitchell Wand. 1986. Finding the Source of Type Errors. In Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL ’86). ACM, New York, NY, USA, 38–43. DOI:http://dx.doi.org/10.1145/
512644.512648

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

http://dx.doi.org/10.1145/1926385.1926391
http://dx.doi.org/10.1145/2786805.2786851
http://www.mathworks.com/products/polyspace/index.html
http://www.mathworks.com/products/polyspace/index.html
http://dx.doi.org/10.1007/978-3-540-31987-0_2
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://dx.doi.org/10.1007/s10990-006-8609-1
http://dx.doi.org/10.1145/2590811
http://dx.doi.org/10.1145/2590811
http://dx.doi.org/10.1145/2254064.2254092
http://dx.doi.org/10.1145/2254064.2254092
http://dx.doi.org/10.1007/11547662_21
https://github.com/ropas/sparrow
http://dx.doi.org/10.1145/366378.366379
http://dx.doi.org/10.1145/512644.512648
http://dx.doi.org/10.1145/512644.512648

1:32 W. Lee et al.

APPENDIX
A PROOFS OF THEOREMS

Lemma 1. Given two alarms φ1 and φ2, if φ1 ⇝ φ2, then φ2 is false whenever φ1 is false.

(Stated in Section 3.4.)

Proof. We will show the refinement by refutation of alarm φ1 (i.e.,
˜

[[P]]φ1

) still soundly ap-

proximates the collecting semantics of P (i.e., α ([[P]]) ⊑ ˜
[[P]]φ1

) if alarm φ1 is false. Then, we can

conclude alarm φ2 if the refinement removes alarm φ2 because the refinement is sound with respect

to the collecting semantics. We prove the lemma by induction and the soundness of abstract slice

operator.

We begin with proving that ∀i ∈ N. α (FP
i⊥) ⊑ ˆ

[[P]]¬φ1

.

αS ([[P]]/δ (φ1) ⊖ Ω(φ1)) ⊑ ˆ
[[P]](φ1) ⊖̂ αS (Ω(φ1)) (αS ◦ ⊖ ⊑ ⊖̂ ◦ αS×S)

αS ([[P]]/δ (φ1)) ⊑ ˆ
[[P]]¬φ1

(φ1) (Def. of ˆ
[[P]]¬φ

1
and [[P]]/δ (φ1) ∩ Ω(φ1) = ∅)

α ([[P]]) ⊑ ˆ
[[P]]¬φ1

(∀φ ∈ Φ\{φ1}. ˆ
[[P]](φ) = ˆ

[[P]]¬φ1

(φ))

α (
⊔

i ∈N FP
i⊥) ⊑ ˆ

[[P]]¬φ1

(α ([[P]]) = α (
⊔

i ∈N FP
i⊥))

By definition of lub and that α is monotone,

∀i ∈ N. α (FP
i⊥) ⊑ ˆ

[[P]]¬φ1

(2)

To show α ([[P]]) ⊑ ˜
[[P]]φ1

= fix# Ĥ where Ĥ = λX̂ . ˆ
[[P]]¬φ1

⊓ F̂ (X̂), we first show

∀i ∈ N. α (FP
i⊥) ⊑ Ĥ i (⊥̂) (3)

by induction.

• Basis :

α (FP (⊥)) ⊑ ˆ
[[P]]¬φ1

(By 2)

α (FP (⊥)) ⊑ F̂ (⊥) (α ◦ FP ⊑ F̂ ◦ α)

∴ α (FP (⊥)) ⊑ ˆ
[[P]]¬φ1

⊓ F̂ (⊥̂) = Ĥ (⊥̂)

• Induction step :

IH : α (FP
k⊥) ⊑ Ĥk (⊥̂)

α (FP
k+1⊥) = α (FP ◦ FP

k⊥)
⊑ α (FP ◦ γ ◦ α ◦ FP

k⊥) (α ◦ FP is monotone,

and id ⊑ γ ◦ α)

⊑ α ◦ FP ◦ γ (Ĥ
k (⊥̂)) (By IH)

⊑ F̂ (Ĥk (⊥̂)) (α ◦ FP ⊑ F̂ ◦ α)

α (FP
k+1⊥) ⊑ ˆ

[[P]]¬φ1

(By 2)

∴ α (FP
k+1⊥) ⊑ ˆ

[[P]]¬φ1

⊓ F̂ (Ĥk (⊥̂)) = Ĥk+1 (⊥̂)

Now, we can show α ([[P]]) ⊑ fix# Ĥ = ˜
[[P]]φ1

as follows:⊔
i ∈N α (FP

i⊥) ⊑
⊔

i ∈N Ĥ
i (⊥̂) (By 3)

α (
⊔

i ∈N FP
i⊥) ⊑

⊔
i ∈N Ĥ

i (⊥̂) (α is continuous.)

α ([[P]]) ⊑ fix# Ĥ = ˜
[[P]]φ1

.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:33

Finally, we can conclude alarm φ2 is false as follows because the refinement is sound.

[[P]]/δ (φ2) ⊆ γS (˜
[[P]]φ1

(φ2)) (α ([[P]]) ⊑ ˜
[[P]]φ1

)

∴ [[P]]/δ (φ2) ∩ Ω(φ2) = ∅ (γS (˜
[[P]]φ1

(φ2)) ∩ Ω(φ2) = ∅)

□

Lemma 2. Given set
−→φ of alarms and alarm φ0, if

−→φ ⇝ φ0, then alarm φ0 is false whenever all alarms

in
−→φ are false.

(Stated in Section 3.4.)

Proof. The proof is similar to the proof of Lemma 1 except that we refute multiple alarms.

We begin with proving that ∀i ∈ N. α (FP
i⊥) ⊑ ˆ

[[P]]
¬
−→φ .

∀φ ∈ −→φ . αS ([[P]]/δ (φ) ⊖ Ω(φ)) ⊑ ˆ
[[P]](φ) ⊖̂ αS (Ω(φ)) (αS ◦ ⊖ ⊑ ⊖̂ ◦ αS×S)

∀φ ∈ −→φ . αS ([[P]]/δ (φ)) ⊑
ˆ

[[P]]¬φ (φ) (∀φ ∈ −→φ . [[P]]/δ (φ) ∩ Ω(φ) = ∅)

∀φ ∈ −→φ . αS ([[P]]/δ (φ)) ⊑
ˆ

[[P]]
¬
−→φ (φ) (ˆ

[[P]]
¬
−→φ =

d
φ ∈−→φ

ˆ
[[P]]¬φ)

α ([[P]]) ⊑ ˆ
[[P]]

¬
−→φ

α (
⊔

i ∈N FP
i⊥) ⊑ ˆ

[[P]]
¬
−→φ (α ([[P]]) = α (

⊔
i ∈N FP

i⊥))

By definition of lub and that α is monotone,

∀i ∈ N. α (FP
i⊥) ⊑ ˆ

[[P]]
¬
−→φ (4)

The remaining part is similar to the corresponding part in the proof of Lemma 1; simply substi-

tuting φ1 for
−→φ and φ2 for φ0 completes the proof. □

Lemma 3.
−→φ ⊆ −→φ ′ =⇒ C−→φ ⊆ C−→φ ′

(Stated in Section 4.1.)

Proof.

˜
[[P]]−→φ ⊒

˜
[[P]]−→φ ′ (By Lemma 5)

∀φ ∈ Φ. γS (˜
[[P]]−→φ (φ)) ∩ Ω(φ) = ∅ =⇒ γS (˜

[[P]]−→φ ′ (φ)) ∩ Ω(φ) = ∅ (γS is monotone.)

Therefore, C−→φ = {φ ∈ A |
−→φ ⇝ φ} ⊆ C−→φ ′ = {φ ∈ A |

−→φ ′ ⇝ φ} □

Lemma 5.
−→φ ⊆ −→φ ′ =⇒ ˜

[[P]]−→φ ′ ⊑
˜

[[P]]−→φ

Proof. Note that
ˆ

[[P]]
¬
−→φ =

d
φi ∈−→φ

ˆ
[[P]]¬φi ⊒

ˆ
[[P]]

¬
−→φ ′ =

d
φi ∈−→φ ′

ˆ
[[P]]¬φi .

LetH = λZ . ˆ
[[P]]

¬
−→φ ⊓ F̂ (Z) andH

′ = λZ . ˆ
[[P]]

¬
−→φ ′⊓ F̂ (Z). Then,H

′ ⊑ H because
ˆ

[[P]]
¬
−→φ ⊑

ˆ
[[P]]

¬
−→φ ′ .

We conclude fix# H ′ ⊑ fix# H because

⊔
i ∈NH

′i⊥ ⊑
⊔

i ∈NH
i⊥. Therfore, ˜

[[P]]−→φ ′ ⊑
˜

[[P]]−→φ . □

Theorem 4. Algorithm 3 computes sound alarm dependences.

(Stated in Section 4.2.)

Proof. At line 28, an abstract dependence R (φ) ⇝ φ is found if T (φ) ⊓ Ω̂(φ) = ⊥. It is correct

because ∀φ ∈ Φ. T (φ) = ˜
[[P]]R (φ) (φ).

Now we show ∀φ ∈ Φ. T (φ) = ˜
[[P]]R (φ) (φ). At line 33 after the function FixpointIterate is

called,T = ˜
[[P]]Φ because we refute all alarms and compute the refinement. In addition, by Lemma 6,

∀φ ∈ Φ. ˜
[[P]]Φ = ˜

[[P]]R (φ) . Therefore ∀φ ∈ Φ. T (φ) = ˜
[[P]]R (φ) (φ).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

1:34 W. Lee et al.

2

Lemma 6. In algorithm 3, after the function FixpointIterate is called, ∀φ ∈ Φ. ˜
[[P]]Φ (φ) =

˜
[[P]]R (φ) (φ).

Proof. We first show that the loop invariant in the function FixpointIterate is

∀φ ∈ Φ. ˜
[[P]]R (φ) (φ) ⊑ T (φ). (5)

As the base case, the loop invariant holds as follows at the first entrance to the loop:

∀φ ∈ Φ. ˜
[[P]]R (φ) (φ) = ˜

[[P]]φ (φ) (R (φ) = {φ})

⊑ ˆ
[[P]]¬φ (φ) (By def. of

˜
[[P]]φ)

= T

As the inductive step, assuming the loop invariant (5) currently holds, we show the loop invariant

still holds after a single iteration.The following table shows the values of
−→φ new and ŝnew respectively

at the begin of line 22 for each of cases (lines 19-21).

Case
−→φ new ŝnew

ŝ = ŝ ′
⋃

φi ∈pred(φ) R (φi)
ˆf (φ) (

⊔
φi ∈pred(φ) T (φi))

ŝ ⊑ ŝ ′ R (φ) T (φ)

otherwise R (φ) ∪
⋃

φi ∈pred(φ) R (φi) T (φ) ⊓ ˆf (φ) (
⊔

φi ∈pred(φ) T (φi))

Because
−→φ new and ŝnew will be assigned to T (φ) and R (φ) respectively at line 23, our goal is to

show that
˜

[[P]]−→φ new
(φ) ⊑ ŝnew in every case.

• Case ŝ = ŝ ′ : Let R′ =
⋃

φi ∈pred(φ) R (φi) and Ĥ = λZ . ˆ
[[P]]¬R′ ⊓ F̂ (Z).

˜
[[P]]R′ (φ) = Ĥ (˜

[[P]]R′) (φ) (˜
[[P]]R′ = fix#Ĥ)

⊑ F̂ (˜
[[P]]R′) (φ) (Ĥ ⊑ F̂)

= ˆf (φ) (
⊔

φi ∈pred(φ)
˜

[[P]]R′ (φi)) (By def. of F̂)

⊑ ˆf (φ) (
⊔

φi ∈pred(φ)
˜

[[P]]R (φi) (φi)) (By Lemma 5 and the monotonicity of
ˆf (φ))

By the inductive hypothesis 5, ∀φi ∈ pred(φ). ˜
[[P]]R (φ) (φ) ⊑ T (φ) and that ˆf (φ) is monotone,

ˆf (φ) (
⊔

φi ∈pred(φ)
˜

[[P]]R (φi) (φi)) ⊑
ˆf (φ) (

⊔
φi ∈pred(φ) T (φi))

Therefore,
˜

[[P]]−→φ new
(φ) ⊑ ŝnew .

• Case ŝ ⊑ ŝ ′ : immediate from the inductive hypothesis (5).

• Case ŝ b ŝ ′, ŝ ̸⊑ ŝ ′ :
Let R′ =

⋃
φi ∈pred(φ) R (φi). From the above two previous cases, we have concluded that

˜
[[P]]R′ (φ) ⊑ ŝ ′ and ˜

[[P]]R (φ) (φ) ⊑ ŝ . By Lemma 7,
˜

[[P]]R (φ)∪R′ (φ) ⊑ ŝ ⊓ ŝ ′. Because R (φ) ∪R′ =
−→φ new and ŝ ⊓ ŝ ′ = ŝnew , we conclude ˜

[[P]]−→φ new
(φ) ⊑ ŝnew .

At the exit of the loop,T = ˜
[[P]]Φ by the correctness of the worklist algorithm. On the other hand,

∀φ ∈ Φ. ˜
[[P]]Φ (φ) ⊑ ˜

[[P]]R (φ) (φ) by Lemma 5 (∀φ ∈ Φ. R (φ) ⊆ Φ). And by the loop invariant 5, we

conclude ∀φ ∈ Φ. ˜
[[P]]Φ (φ) = ˜

[[P]]R (φ) (φ). 2

Lemma 7. If ˜
[[P]]R (φ) ⊑ s and ˜

[[P]]R′ (φ) ⊑ s ′, then ˜
[[P]]R∪R′ (φ) ⊑ s ⊓ s ′.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

Sound Non-Statistical Clustering of Static Analysis Alarms 1:35

Proof.
˜

[[P]]R∪R′ (φ) ⊑ ˜
[[P]]R (φ) ⊑ s (By Lemma 5)

˜
[[P]]R∪R′ (φ) ⊑ ˜

[[P]]R′ (φ) ⊑ s ′

˜
[[P]]R∪R′ (φ) ⊑ s ⊓ s ′ (By definition of glb.)

2

Theorem 6. ∀φ ∈ Φ.γI (ˆ
[[P]]

I
(φ)) ⊖ Ω(φ,x ,y) ⊑ γI (ˆ

[[P]]
I
(φ) ⊖ˆSI

Ω̂(φ,x ,y))

(Stated in Section 5.2.)

Proof. We first show γI (Ω̂(φ,x ,y)) ⊆ Ω(φ,x ,y).

• Case Ω̂(φ,x ,y) = ⊥ˆSI
: trivial.

• Case Ω̂(φ,x ,y) = {x 7→ [ymax ,+∞],y 7→ [−∞,ymin − 1]} :

∀s ∈ γI (Ω̂(φ,x ,y)). s (x) ≥ s (y) because ymax ≥ ymin − 1.

Therefore, Ω̂(φ,x ,y) is an underapproximation of the erroneous states.

Next, we show Ω̂(φ,x ,y) is precisely complementable. In other words,

γ ˆSI (Ω̂(φ,x ,y)) = ℘(S) \ γ ˆSI (Ω̂(φ,x ,y)).

γ ˆSI (Ω̂(φ,x ,y)) = {x 7→ nx ,y 7→ ny | nx ≥ ymax ,ny < ymin }

γ ˆSI (Ω̂(φ,x ,y)) = {x 7→ nx ,y 7→ ny , z 7→ nz | z ∈ Var, nz ∈ Z, nx < ymax , ny ≥ ymin}

∴ γ ˆSI (Ω̂(φ,x ,y)) = ℘(S) \ γ ˆSI (Ω̂(φ,x ,y))

In addition, because γI (Ω̂(φ,x ,y)) ⊆ Ω(φ,x ,y),

∀φ ∈ Φ. γI (ˆ
[[P]](φ)) ⊖ Ω(φ,x ,y) ⊑ γI (ˆ

[[P]](φ)) ⊖ γI (Ω̂(φ,x ,y))

By the fact that Ω̂(φ,x ,y) is precisely complementable and Theorem 5, the theorem holds.

□

Received June 2015; revised Dec 2016; accepted May 2017

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: August 2017.

	Abstract
	1 Introduction
	1.1 Problem
	1.2 Our Solution
	1.3 Examples
	1.4 Contributions

	2 Overview
	3 Alarm Clustering Framework
	3.1 Static Analysis
	3.2 Alarm Dependences
	3.3 Computing Alarm Dependences
	3.4 Alarm Clustering
	3.5 Final Alarm Report

	4 Alarm-Clustering Algorithms
	4.1 Algorithm 1: Finding Minimal Dominant Alarms
	4.2 Algorithm 2: Non-Minimal but Efficient

	5 Instances
	5.1 Setting: Baseline Analyzer
	5.2 Clustering using Interval Domain
	5.3 Clustering using Octagon Domain
	5.4 Clustering using Symbolic Execution

	6 Experiments
	7 Related Work
	8 Conclusion
	References
	A Proofs of Theorems

