
A

Global Sparse Analysis Framework

Hakjoo Oh, Seoul National University
Kihong Heo, Seoul National University
Wonchan Lee, Seoul National University
Woosuk Lee, Seoul National University
Daejun Park, Seoul National University
Jeehoon Kang, Seoul National University
Kwangkeun Yi, Seoul National University

In this article we present a general method for achieving global static analyzers that are precise, sound,
yet also scalable. Our method, on top of the abstract interpretation framework, is a general sparse analysis
technique that supports relational as well as non-relational semantics properties for various programming
languages. Analysis designers first use the abstract interpretation framework to have a global and correct
static analyzer whose scalability is unattended. Upon this underlying sound static analyzer, analysis design-
ers add our generalized sparse analysis techniques to improve its scalability while preserving the precision
of the underlying analysis. Our method prescribes what to prove to guarantee that the resulting sparse
version should preserve the precision of the underlying analyzer.

We formally present our framework; we show that existing sparse analyses are all restricted instances
of our framework; we show more semantically elaborate design examples of sparse non-relational and re-
lational static analyses; we present their implementation results that scale to globally analyze up to one
million lines of C programs. We also show a set of implementation techniques that turn out to be critical to
economically support the sparse analysis process.

Categories and Subject Descriptors: F.3.2 [Semantics of Programming Languages]: Program Analysis

General Terms: Programming Languages, Program Analysis

Additional Key Words and Phrases: Static analysis, abstract interpretation, sparse analysis

ACM Reference Format:
ACM Trans. Program. Lang. Syst. V, N, Article A (January YYYY), 44 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Precise, sound, scalable yet global static analyzers have been unachievable in general.
Other than almost syntactic properties, once the target property becomes slightly deep
in semantics it’s been a daunting challenge to achieve the four goals in a single static
analyzer. This situation explains why, for example, in the static error detection tools for
full C, there exists a clear dichotomy: either “bug-finders” that risk being unsound yet
scalable or “verifiers” that risk being unscalable yet sound. No such tools are scalable
to globally analyze million lines of C code while being sound and precise enough for
practical use.

In this article we present a general method for achieving global static analyzers that
are precise, sound, yet also scalable. Our approach generalizes the sparse analysis
ideas on top of the abstract interpretation framework. Since the abstract interpreta-

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 Oh et al.

tion framework [Cousot and Cousot 1977; 1979; 1992] guides us to design sound yet
arbitrarily precise static analyzers for any target language, analysis designers first
use the framework to have a global and correct static analyzer whose scalability is
unattended. Upon this underlying sound static analyzer, analysis designers add our
generalized sparse analysis techniques to improve its scalability while preserving the
precision of the underlying analysis. Our framework prescribes what to prove to guar-
antee that the resulting sparse version should preserve the precision of the underlying
analyzer.

Our framework bridges the gap between the two existing technologies – abstract
interpretation and sparse analysis – towards the design of sound, yet scalable global
static analyzers. Note that while the abstract interpretation framework [Cousot and
Cousot 1977; 1979; 1992] provides a theoretical knob to control the analysis precision
without violating its correctness, the framework does not provide a knob to control
the resulting analyzer’s scalability while preserving its precision. On the other hand,
existing sparse analysis techniques [Reif and Lewis 1977; Wegman and Zadeck 1991;
Dhamdhere et al. 1992; Chase et al. 1990; Tok et al. 2006; Cytron and Ferrante 1995;
Johnson and Pingali 1993; Hardekopf and Lin 2009; 2011] achieve scalability, but they
are mostly algorithmic and tightly coupled with particular analyses. The sparse tech-
niques are not general enough to be used for an arbitrarily complicated semantic anal-
ysis. A few techniques [Choi et al. 1991; Ramalingam 2002] are in general settings but
instead they take a coarse-grained approach to sparsity, where the entire (non-sparse)
abstract state is propagated as a unit from program point to program point.

We formally present our framework; we present that existing sparse analyses are
all restricted instances of our framework; we show more semantically elaborate de-
sign examples of sparse non-relational and relational static analyses; we present their
implementation results that scale to analyze up to one million lines of C programs.

Contributions. In this article, we make the following contributions.

— We present a general framework for designing sparse static analysis. Given a base-
line analysis defined by abstract interpretation, our framework provides a semantics-
based method to define a sparse version that preserves the precision of the original
analysis. On the theoretical side, our framework is general in three ways:
— It is applicable to static analysis for various programming languages, e.g., imper-

ative languages, functional languages, etc.
— It is applicable to static analysis with various semantics properties, e.g., arbitrary

non-relational analysis, packed relational analysis, etc.
— It is applicable to arbitrary trace partitioning, e.g., context-sensitivity, path-

sensitivity, loop unrolling, etc.
— We present new notions of data dependencies and their safe approximations, which

is the key to the precision-preserving sparse analysis. Unlike conventional def-use
chains, sparse analysis with our data dependency preserves the precision of the orig-
inal non-sparse version.

— We demonstrate the practicality of our framework for a realistic C static analyzer.
Using our framework, we have derived a sparse version of SPARROW [Jhee et al.
2008; Oh and Yi 2010; Oh et al. 2011; Oh and Yi 2011; Oh et al. 2012], an industrial-
strength static analyzer for C programs. The sparse version is able to analyze pro-
grams up to 1 million lines with interval domain and up to 100K lines with packed
octagon domain.

Outline. Section 2 gives an informal overview on sparse analysis. Section 3 presents
our sparse analysis framework. Section 4 and 5 design sparse non-relational and re-
lational analyses, respectively, based on our framework. Section 6 discusses several

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:3

issues involved in the implementations. Section 7 presents the experimental studies.
Section 8 discusses related work and Section 9 concludes the paper.

2. INFORMAL OVERVIEW ON SPARSE ANALYSIS
Before delving into our sparse analysis framework, we briefly give the idea of sparse
analysis. Readers who are familiar with the notion of sparse analysis may wish to skip
this overview and directly go to the next section.

Consider the following simple program, represented by a control flow graph:

x:=1 y:=2 y:=x

Suppose that we analyze the program with the interval domain. A conventional non-
sparse static analysis would work by following the control flows of the program, re-
sulting in the analysis results at each program point as follows: (assume that x and y
initially have >.)

x:=1 y:=2 y:=x

x : [1, 1]
y : >

x : [1, 1]
y : [2, 2]

x : [1, 1]
y : [1, 1]

The results show that, for instance, x has interval value [1, 1] and y has [2, 2] right after
the second statement.

Sparse analysis aims to optimize this conventional static analysis based on two ob-
servations.

— Spatial Sparsity (Lightweight State): First, in the analysis of each statement, only
small part of the state is actually used. For example, in the first statement of the
above program, the value of x is necessary to analyze the first statement but y is not.
So, at each program point, sparse analysis stores only the values that are used in the
analysis:

x:=1 y:=2 y:=x

x : [1, 1] y : [2, 2]
x : [1, 1]
y : [1, 1]

— Temporal Sparsity (Express Flow): The second observation is that the semantic de-
pendencies among statements are usually sparse. For instance, the value of x in the
first statement is not used at the next statement but used at the last statement.
Sparse analysis propagates abstract values along the semantic dependencies of the
program, rather than along control flows:

x:=1 y:=2 y:=x

x : [1, 1] y : [2, 2]
x : [1, 1]
y : [1, 1]

x

The label x on the dependency arrow means that the target statement has a depen-
dency on x with the source statement.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 Oh et al.

Our sparse analysis framework in Section 3 provides a general theory for designing
such a sparse analysis without violating the correctness and precision of the original
non-sparse analysis.

3. SPARSE ANALYSIS FRAMEWORK
In this section, we develop our sparse analysis framework. Given a static analysis
designed by abstract interpretation, our framework prescribes how to transform the
analysis into its sparse version without violating the analysis’ soundness and preci-
sion. In Section 3.2 and 3.3, we define the collecting semantics of the program. In
Section 3.4, we specify a family of baseline abstractions that our framework considers.
Then, we derive the sparse version of the baseline analysis in the remaining sections.

Though we use the C language as a main target in our experiments, we do not re-
strict the language. Our sparse analysis framework is general and applicable to vari-
ous programming languages (functional, object-oriented, etc), once their semantics are
operationally defined as transition systems.

3.1. Notation
We write P(S) for the power set of S. Given partial function f ∈ A → B, we write
dom(f) for the domain of f . We write f |C for the restriction of function f to the domain
dom(f) ∩ C such that f |C(x) = f(x) if x ∈ dom(f) ∩ C and ⊥ otherwise. We write f\C
for the restriction of f to the domain dom(f) \ C. We abuse the notation f |a and f\a
for the domain restrictions on singleton set dom(f)∩{a} and dom(f)\{a}, respectively.
We write f [a 7→ b] for function f with the value of a replaced by b. We write f [a1 7→
b1, · · · , an 7→ bn] for f [a1 7→ b1] · · · [an 7→ bn]. For all domains, we assume appropriate
⊥ and > as well as order v and join t. In particular, we define t,v,>,⊥ for functions
in a pointwise fashion, e.g., f t g = λx.f(x) t g(x). We write f [{a1, · · · , an}

w7→ b] for
f [a1 7→ f(a1) t b, · · · , an 7→ f(an) t b] (weak update).

Given a (potentially infinite) set S, we write S+ for the set of all finite non-empty
sequences of elements of S. When σ is a finite sequence, σk denotes the (k+1)th element
of the sequence, σ0 the first element, and σa the last element. Given a sequence σ ∈ S+

and an element s ∈ S, σ · s denotes a sequence obtained by appending s to σ.

3.2. Programs
We describe a program’s semantics as a transition system (S,→,Sι), where S is the
set of states of the program, (→) ⊆ S × S is the transition relation describing how the
program execution progresses from one state to the next state, and Sι ⊆ S denotes
the set of initial states. A sequence σ of states is said to be a trace if σ is a (partial)
execution sequence, i.e., σ0 ∈ Sι ∧ ∀k.σk → σk+1. We abuse the notion of transition
relation→ for traces, i.e., σ′ → σ ⇐⇒ ∃s.(σ = σ′ · s) ∧ (σ′a → s).

3.3. Collecting Semantics
The collecting semantics [[P ]] ∈ P(S+) of program P is the set of all finite traces of P :

[[P ]] = {σ ∈ S+ | σ0 ∈ Sι ∧ ∀k.σk → σk+1}

Note that the semantics [[P ]] is the least fixpoint of the semantic function F ∈ P(S+)→
P(S+), i.e., [[P ]] = lfpF , defined as follows:

F (Σ) = Sι ∪ {σ · s | σ ∈ Σ ∧ σa → s}.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:5

3.4. Baseline Abstraction
We abstract the collecting semantics of program P by the following Galois connections:

P(S+) −−−→←−−−α1

γ1

∆→ P(S+) −−−→←−−−α2

γ2

∆→ Ŝ

The abstraction consists of two steps:

(1) Partitioning abstraction (α1, γ1): we abstract the set of traces (P(S+)) into parti-
tioned sets of traces (∆→ P(S+), where ∆ is the set of partitioning indices).

(2) State abstraction (α2, γ2): for each partition, the associated set of traces is ab-
stracted into an abstract state (Ŝ) that over-approximates the reachable states of
the traces.

In Section 3.4.1, we specify the partitioning abstraction: the definitions of (α1, γ1) and
semantic function Fπ ∈ (∆ → P(S+)) → (∆ → P(S+)). In Section 3.4.2, we will define
the final abstract domain (∆ → Ŝ) and abstract semantic function F̂ ∈ (∆ → Ŝ) →
(∆→ Ŝ) as a further abstraction of the partitioning abstraction.

3.4.1. Partitioning Abstraction. Following [Mauborgne and Rival 2005], we first partition
the set of traces. Suppose we are given a partitioning function π : ∆→ P(S+) such that
π is either a covering (i.e., S+ =

⋃
i∈∆ π(i)) or a partition (i.e., π is a covering and ∀i, i′ ∈

∆. i 6= i′ =⇒ π(i) ∩ π(i′) = ∅). Then, the following α1 and γ1

α1(Σ) = λi ∈ ∆.Σ ∩ π(i)

γ1(φ) =
⋃
i∈∆

φ(i)

form a Galois connection:

P(S+) −−−→←−−−α1

γ1

∆→ P(S+).

We define the semantic function Fπ ∈ (∆→ P(S+))→ (∆→ P(S+)) as follows:

Fπ(φ) = λi ∈ ∆.α1(Sι)(i) ∪ fi(
⋃
i′⇒φi

φ(i′))

where fi ∈ P(S+) → P(S+) is the semantic function for partitioning index i and (⇒φ

) ⊆ ∆×∆ is the transition relation between partitioning indices.

Definition 3.1 (Semantic Function). Semantic function fi ∈ P(S+) → P(S+) under-
takes one step state transitions for index i:

fi(Σ) = {σ | σ′ ∈ Σ ∧ σ′ → σ ∧ σ ∈ π(i)}.

2

Given a set Σ of input traces, fi makes their transitions one step forward if the result-
ing trace σ arrives at the current partitioning index i.

Definition 3.2 (Transition Relation). Transition relation (⇒) ⊆ ∆ × ∆ × (∆ →
P(S+)) is a ternary relation such that i′ ⇒φ i indicates that one step transition in
φ may happen from i′ to i according to the partitioning function π:

(⇒) = {(i′, i, φ) | σ′ ∈ φ(i′) ∧ σ′ → σ ∧ σ ∈ π(i)}.

2

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:6 Oh et al.

With this partitioning abstraction, we can design static analysis with general trace
partitioning [Mauborgne and Rival 2005]. One of the conventional partitioning strate-
gies is the control-point partitioning. Suppose a state is decomposed into a control
point in C and a memory state in M, i.e., S = C × M. We use C as the set of parti-
tioning indices and let πC ∈ C → P(S+) partition S+ based on the final control point:
πC(c) = {σ ∈ S+ | ∃m.σa = (c,m)}. Then, the transition relation (⇒) denotes the con-
trol flows of the program, and fi is the semantics function for control point i. The analy-
sis with this partitioning is known as flow-sensitive. Other partitioning strategies such
as context-sensitivity, path-sensitivity, and loop unrolling are all specific instances of
general trace partitioning.

The following lemma shows that the partitioning abstraction we designed above is
indeed sound with respect to the collecting semantics.

LEMMA 3.3. α1(lfpF ) v lfpFπ.

PROOF. We prove α1 ◦ F v Fπ ◦ α1. Then, the soundness is obtained by the fixpoint
transfer theorem [Cousot and Cousot 1977].

∀Σ ∈ P(S+),

(α1 ◦ F )(Σ) = α1(Sι ∪ {σ · s | σ ∈ Σ ∧ σa → s}) (def. of F )
= α1(Sι) t α1({σ · s | σ ∈ Σ ∧ σa → s}) (α1 is distrib. over ∪)
= (λi.(α1Sι)(i)) t (λi.{σ · s | σ ∈ Σ ∧ σa → s} ∩ π(i)) (def. of α1)
= λi.(α1Sι)(i) ∪ {σ · s ∈ π(i) | σ ∈ Σ ∧ σa → s} (def. of t)
= λi.(α1Sι)(i) ∪ fi(Σ) (def. of fi)
= λi.(α1Sι)(i) ∪ (fi(Σ) ∩ fi(

⋃
i′⇒(α1Σ)i

π(i′))) (Lemma 3.4)
= λi.(α1Sι)(i) ∪ fi(Σ ∩ (

⋃
i′⇒(α1Σ)i

π(i′))) (fi is distrib. over ∩)
= λi.(α1Sι)(i) ∪ fi(

⋃
i′⇒(α1Σ)i

(Σ ∩ π(i′))) (set theory)
= λi.(α1Sι)(i) ∪ fi(

⋃
i′⇒(α1Σ)i

(α1Σ)(i′)) (def. of α1)
= Fπ(α1Σ) (def. of Fπ)
= (Fπ ◦ α1)(Σ)

LEMMA 3.4. ∀Σ ⊆ S+,∀i ∈ ∆.fi(Σ) ⊆ fi(
⋃
i′⇒(α1Σ)i

π(i′)).

PROOF. Note that
⋃
i∈∆(α1Σ)(i) = Σ because π is a covering:⋃

i∈∆(α1Σ)(i) =
⋃
i∈∆(Σ ∩ π(i))

= Σ ∩
⋃
i∈∆ π(i)

= Σ ∩ S+ = Σ

Now, ∀Σ ⊆ S+,

fi(Σ) = {σ | σ′ ∈ Σ ∧ σ′ → σ ∧ σ ∈ π(i)} (def. of fi)
= fi({σ′ | σ′ ∈ Σ ∧ σ′ → σ ∧ σ ∈ π(i)}) (def. of fi)
= fi({σ′ | σ′ ∈

⋃
i′∈∆(α1Σ)(i′) ∧ σ′ → σ ∧ σ ∈ π(i)}) (

⋃
i′∈∆(α1Σ)(i′) = Σ)

= fi(
⋃
i′∈∆{σ′ | σ′ ∈ (α1Σ)(i′) ∧ σ′ → σ ∧ σ ∈ π(i)})

= fi(
⋃

(i′,i)∈∆×∆{σ′ | σ′ ∈ (α1Σ)(i′) ∧ σ′ → σ ∧ σ ∈ π(i)})
⊆ fi(

⋃
(i′,i)∈∆×∆∧σ′∈(α1Σ)(i′)∧σ′→σ∧σ∈π(i) π(i′)) ((α1Σ)(i′) ⊆ π(i′))

= fi(
⋃
i′⇒(α1Σ)i

π(i′)) (def. of⇒)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:7

3.4.2. State Abstraction. Next, we abstract the partitioned collecting semantics by ab-
stracting each partition’s traces into an abstract state. Suppose we have abstraction
and concretization functions for set of traces, i.e., αS and γS such that

P(S+) −−−→←−−−αS

γS
Ŝ

and αS is distributive over ∪, i.e., ∀Σ1,Σ2 ⊆ S+. αS(Σ1 ∪ Σ2) = αS(Σ1) t αS(Σ2). Then,
the state abstraction is defined as the following Galois connection:

∆→ P(S+) −−−→←−−−α2

γ2

∆→ Ŝ

where α2 and γ2 are pointwise liftings of αS and γS, respectively, i.e.,

α2(φ) = λi ∈ ∆.αS(φ(i))

γ2(φ̂) = λi ∈ ∆.γS(φ̂(i))

We consider a particular, yet general enough, family of abstract domains such that
Ŝ is of form L̂ → V̂ where L̂ is a finite set of abstract locations, and V̂ is a (potentially
infinite) set of abstract values. First, all non-relational abstract domains, such as in-
tervals [Cousot and Cousot 1977], are members of this family. Furthermore, the family
also covers some numerical, relational domains. Practical relational analyses exploit
packed relationality [Cousot et al. 2009; Miné 2006b; Venet and Brat 2004; Blanchet
et al. 2003]; the abstract domain is of form Packs→ R̂ where Packs is a set of variable
groups selected to be related together. R̂ denotes numerical constraints among vari-
ables in those groups. In such packed relational analysis, each variable pack is treated
as an abstract location (L̂) and numerical constraints amount to abstract values (V̂).
Example of the numerical constraints are the domains of octagons [Miné 2006b] and
polyhedra1 [Cousot and Halbwachs 1978].

The final abstract semantics is characterized as the least fixpoint of the following
abstract semantic function F̂ ∈ (∆→ Ŝ)→ (∆→ Ŝ):

F̂ (φ̂) = λi ∈ ∆. f̂i(
⊔

i′↪→φ̂i

φ̂(i′)) (1)

where f̂i ∈ Ŝ → Ŝ (Definition 3.5) is an abstract semantic function for partitioning
index i and (↪→φ̂) ⊆ ∆×∆ (Definition 3.6) is an abstract transition relation.

Definition 3.5 (Abstract Semantic Function). Abstract semantic function f̂i ∈ Ŝ →
Ŝ is an abstract counterpart of fi, which satisfies the following conditions:

(1) ∀ŝ, ŝ′ ∈ Ŝ. ŝ v ŝ′ =⇒ f̂i(ŝ) v f̂i(ŝ′)
(2) αS ◦ fi v f̂i ◦ αS
(3) ∀ŝ ∈ Ŝ.αS((α1Sι)(i)) v f̂i(ŝ)

2

The first condition says that f̂i is monotone. The second and third conditions ensure
the soundness of the abstract semantics. In particular, the third condition requires
that f̂i subsumes the initial traces. If f̂i did not satisfy the third condition, we would

1Some domains such as the convex polyhedra is not associated with a Galois-connection. In this case, we
could reformulate the analysis only assuming the existence of a concretization function.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:8 Oh et al.

have defined F̂ as F̂ (φ̂) = λi ∈ ∆.αS((α1Sι)(i)) t f̂i(
⊔
i′↪→φ̂i

φ̂(i′)), which defines funda-

mentally the same analysis as (1). We chose to subsume the initial traces by f̂i because
this makes our subsequent formalization simpler. Next, we define abstract transition
relation (↪→φ̂) ⊆ ∆×∆ between partitioning indices.

Definition 3.6 (Abstract Transition Relation). Abstract transition relation (↪→) ⊆
∆ ×∆ × (∆ → Ŝ) is an abstract counterpart of ⇒, which satisfies the following condi-
tions:

(1) (↪→α2(φ)) ⊇ (⇒φ) = {(i′, i) ∈ ∆×∆ | σ′ ∈ φ(i′) ∧ σ′ → σ ∧ σ ∈ π(i)}
(2) ∀φ̂′, φ̂ ∈ ∆→ Ŝ. φ̂′ v φ̂ =⇒ (↪→φ̂′) ⊆ (↪→φ̂)

(3) ∀φ̂′, φ̂ ∈ ∆→ Ŝ, i′, i ∈ ∆.(φ̂′(i′) = φ̂(i′) =⇒ (i′ ↪→φ̂′ i ⇐⇒ i′ ↪→φ̂ i))

2

The first condition means the soundness of ↪→. The second condition says that ↪→ is
monotone on φ̂. The last condition means that the next index i of the current index i′
is determined solely by the abstract state at i′.

Note that our baseline analysis is able to express a family of static analysis in which
data and control are mutually dependent: ↪→φ̂ (control) depends on φ̂ (data, analysis
process’ intermediate results) and the analysis process F̂ is defined using ↪→φ̂. It is not
uncommon to design static analysis this way. For example, for functional languages or
object-oriented languages, the desired precision is usually obtained only when control
flow information is simultaneously computed during the analysis. On the other hand,
in “C-like” languages, it is acceptable to assume that the control flow relation is fixed
and available before the analysis. Our baseline analysis covers both cases.

The following lemmas show the soundness of the abstract semantics.

LEMMA 3.7. α2(lfpFπ) v lfpF̂ .

PROOF. We prove α2 ◦ Fπ v F̂ ◦ α2. Then, the soundness is obtained by the fixpoint
transfer theorem [Cousot and Cousot 1977].
∀φ ∈ ∆→ P(S+), i ∈ ∆,

(α2 ◦ Fπ)(φ)(i) = αS((α1Sι)(i) t fi(
⋃
i′⇒φi

φ(i′))) (def. of α2 and Fπ)
= αS((α1Sι)(i)) t (αS ◦ fi)(

⋃
i′⇒φi

φ(i′)) (αS is distributive)
v (f̂i ◦ αS)(

⋃
i′⇒φi

φ(i′)) ((2) and (3) of Def. 3.5)
= f̂i(αS(

⋃
i′⇒φi

φ(i′))

= f̂i(
⊔
i′⇒φi

α2(φ)(i′)) (αS is distrib. & def. of α2)
v f̂i(

⊔
i′↪→α2(φ)i

α2(φ)(i′)) ((1) of Def. 3.6)
= (F̂ ◦ α2)(φ)(i) (def. of F̂ )

LEMMA 3.8 (SOUNDNESS). α(lfpF ) v lfpF̂ where α = α2 ◦ α1.

PROOF. By Lemma 3.3, Lemma 3.7, and monotonicity of α2.

3.5. Toward Sparse Analysis
The abstract semantic function given in (1) may propagate some abstract values unnec-
essarily between partitioning indices. For example, suppose that we analyze statement
x := y. We know for sure that the abstract semantic function for the statement defines

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:9

a new abstract value only at variable x and uses only the abstract value of variable
y. Thus, it is unnecessary to bring the whole of the abstract state to the statement,
only the portions for variables x and y are enough. However, the function given in (1)
blindly propagates the entire abstract states φ̂(i′) of all predecessors i′ to the current
partitioning index i.

To make the analysis sparse, we need to eliminate these unnecessary propagations
by making the semantic function propagate abstract values only along the “semantic
dependency”, not blindly along the transition flows (↪→); that is, we make the semantic
function propagate only the abstract values newly defined at one partitioning index to
the other where they are actually used.

Our goal is to present a general framework for transforming static analysis defined
as (1) into its sparse version while preserving the precision and soundness of the orig-
inal analysis.

In the rest of this section, we will use the following example analysis to illustrate our
framework. For simplicity, we use a simple analysis for a small imperative language,
though our result is generally applicable to arbitrary static analyses and languages.

Example 3.9. We design a simple pointer analysis for a small subset of C. Suppose
a program is given as a control flow graph 〈C, ↪→〉, where C is the set of control points
and (↪→) ⊆ C × C is the control flow relation among control points. Each control point
is associated with a command. Consider the following simple subset of C:

cmd → x := e | ∗x := e
e → x | &x | ∗x

The meanings of each statement and each expression are fairly standard: a command
is simply either a scalar assignment (x := e) or a pointer assignment (∗x := e), which
assigns the value of e into the variable x or the location that x points to, respectively.
An expression may be a variable (x), an address-of expression (&x), and a pointer
dereference (∗x).

We design a simple pointer analysis for this language. Suppose we use the control-
point partitioning (Section 3.4.1). Then, the abstract semantic function is defined as
follows:

F̂ (φ̂) = λi ∈ C.f̂i(
⊔
i′↪→i

φ̂(i′))

where the abstract domain is a map from control point to abstract states, i.e., φ̂ ∈ C→
Ŝ. In this example analysis, we suppose that control flow relation ↪→ is given before the
analysis and hence does not depend on φ̂. The abstract state

ŝ ∈ Ŝ = Var → P(Var)

is a map from variables to their points-to variables. In this analysis, an abstract loca-
tion is a program variable and an abstract value is a set of points-to variables.

The abstract semantic function f̂i ∈ Ŝ → Ŝ for commands is defined as follows:
(cmd(i) indicates the command associated with control point i):

f̂i(ŝ) =


ŝ[x 7→ Ê(e)(ŝ)] cmd(i) = x := e

ŝ[x′ 7→ Ê(e)(ŝ)] cmd(i) = ∗x := e and ŝ(x) = {x′}
ŝ[ŝ(x)

w7→ Ê(e)(ŝ)] cmd(i) = ∗x := e

Auxiliary function Ê ∈ e → Ŝ → P(Var) evaluates the abstract value (points-to set)
of e under the abstract state ŝ. The abstract effect of assignment x := e is to replace
the value of x by the value of e. With pointer assignment ∗x := e, we distinguish two

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 Oh et al.

cases: (1) when x points to a single location, we perform a strong update by replacing
the value of the pointed location; and (2) when x points to multiple locations, we make
an weak update to the locations in ŝ(x). The Ê function is simply defined as follows:

Ê(e)(ŝ) =

 ŝ(x) e = x
{x} e = &x⋃
x′∈ŝ(x) ŝ(x

′) e = ∗x

For variables (x), we look up the abstract state to find their abstract values. The ab-
stract value of expression &x is {x}. The abstract value of expression ∗x is obtained by
joining all the abstract values of variables in ŝ(x). 2

3.6. Definition and Use Set
The first step toward deriving correct sparse analysis is to precisely define the notion
of definitions and uses. Sparse analysis is derived based on these definitions and uses.
Because we are interested in properties of the abstract semantics, they are defined in
terms of the abstract semantic function f̂i.

Definition 3.10 (Definition Set). Definition set D(i) at partitioning index i is a set
of abstract locations whose abstract values are ever changed by f̂i during the analysis,
i.e., (let S = lfpF̂ )

D(i) = {l ∈ L̂ | ∃ŝ v
⊔

i′↪→Si

S(i′). f̂i(ŝ)(l) 6= ŝ(l)}.

2

In the definition,
⊔
i′↪→Si

S(i′) denotes the input abstract state flowing to partitioning
index i at the fixpoint and therefore ŝ v

⊔
i′↪→Si

S(i′) quantifies over the analysis pro-
cess’ intermediate states at partitioning index i. Thus, abstract location l is included
in D(i) if and only if f̂i changes the value of l at partitioning index i during the course
of the analysis. In other words, if an abstract location l is not included in the definition
set, the abstract semantic function has the identity transfer on l, which the following
lemma states.

LEMMA 3.11. For all i ∈ ∆, l ∈ L̂, ŝ ∈ Ŝ,

(l 6∈ D(i) ∧ ŝ v
⊔

i′↪→(lfpF̂ )i

(lfpF̂ )(i′)) =⇒ f̂i(ŝ)(l) = ŝ(l).

PROOF. Immediate from the dual statement of Definition 3.10.

Note that the notion of definition set is a semantic one. For example, suppose that
we analyze statement x := x. Even if the statement assigns a value to variable x, it has
semantically no effect. Therefore, according to our definition, variable x is not included
in the definition set of the statement.

Definition 3.12 (Use Set). Use set U(i) at partitioning index i consists of two parts:

U(i) = Ud(i) ∪ Uc(i).

The first part (Ud(i)) is the set of abstract locations without which some values in D(i)

are not properly generated, i.e., (let S = lfpF̂ )

Ud(i) = {l ∈ L̂ | ∃ŝ v
⊔

i′↪→Si

S(i′). f̂i(ŝ)|D(i) 6= f̂i(ŝ\l)|D(i)}.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:11

In addition, we collect abstract locations that are necessary to generate transition flows
(↪→): Uc(i) representing the set of abstract locations without which some flows in ↪→S
are not properly generated, i.e.,

Uc(i) = {l ∈ L̂ | ∃i′ ∈ ∆.(i, i′) ∈ (↪→S) ∧ (i, i′) 6∈ (↪→S[i7→S(i)\l])}.
2

Note that S[i 7→ S(i)\l] represents S whose abstract state in index i (S(i)) does not
contain an abstract value for location l (S(i)\l). For static analysis of imperative lan-
guages, where transition relation ↪→ is given a priori and is not computed during the
analysis, Uc(i) is ∅ and U(i) is identical to Ud(i).

Example 3.13. Suppose that we analyze the following program with the analysis
designed in Example 3.9: (superscripts are control points.)

10©x := &y; 11©∗ p := &z; 12©y := x; (2)

Suppose further that the points-to set for pointer p at 11© is {x, y} during the analysis.
Then, according to the analysis definition in Example 3.9, abstract semantic function
f̂i for each control point i is as follows:

f̂10©(ŝ) = ŝ[x 7→ {y}]
f̂11©(ŝ) = ŝ[ŝ(p)

w7→ {z}] = ŝ[{x, y} w7→ {z}]
f̂12©(ŝ) = ŝ[y 7→ ŝ(x)]

Then, the definition set and use set at each control point are as follows:

D(10©) = {x} U(10©) = ∅
D(11©) = {x, y} U(11©) = {p, x, y}
D(12©) = {y} U(12©) = {x}

The definition sets (D(i)) are easy to check. Because f̂10© assigns a value to location x,
D(10©) includes x. Similarly, x and y are defined by f̂11©, and y is defined by f̂12©. For use
sets (U(i)), we compute Ud(i) only, since our example analysis does not update transi-
tion relation ↪→ during the analysis and hence Uc(i) is ∅. U(10©) is ∅ because, according to
the definition of f̂10©, the values in D(10©)(= {x}) are generated without referring to any
abstract location. U(11©) includes p because p is dereferenced. In addition, U(11©) includes
x and y because of weak updates ( w7→), ŝ[{x, y} w7→ {z}] = ŝ[x 7→ ŝ(x)∪{z}, y 7→ ŝ(y)∪{z}],
where the values of x and y are referred. Note that this implicit use information, which
does not explicitly appear in the program text, is naturally captured by following the
abstract semantics. U(12©) includes x whose value is referred to, to generate the value
of y (D(12©)). 2

In the rest of the paper, we frequently use a generalized notion of use set Ud(i).

Definition 3.14 (Use Template). We write dQ(i) for the set of abstract locations that
are necessary to properly generate the values in Q, i.e., (let S = lfpF̂ )

dQ(i) = {l ∈ L̂ | ∃ŝ v
⊔

i′↪→Si

S(i′). f̂i(ŝ)|Q 6= f̂i(ŝ\l)|Q}.

Note that Ud(i) = dD(i)(i). 2

Regarding the use set, we assume that abstract semantic function f̂i and transition
relation ↪→ are well-formed in the following sense.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Oh et al.

Definition 3.15 (Well-formed Abstract Semantic Function). We say that abstract
semantic function f̂i is well-formed if

∀Q ⊆ L, i ∈ ∆, ŝ ∈ Ŝ, U ⊇ dQ(i). f̂i(ŝ)|Q = f̂i(ŝ|U )|Q.

2

The condition means that f̂i properly generates the values of abstract locations in D(i)
if the input state contains all the use set, which naturally holds in most semantic
functions in conventional static analysis. This requirement is not very important to
understand the rest of the paper but necessary in the correctness proof (Appendix A).
Similarly, we assume that ↪→ satisfies the following property.

Definition 3.16 (Well-formed Abstract Transition Relation). We say that abstract
transition relation ↪→ is well-formed if

∀i ∈ ∆, U ⊇ Uc(i), φ̂ ∈ ∆→ Ŝ.(↪→φ̂) = (↪→φ̂[i 7→φ̂(i)|U ]).

2

3.7. Data Dependencies
Once we have identified definition and use sets at each partitioning index, we can
discover data dependencies of abstract semantic function F̂ between two partitioning
indices. Intuitively, if the abstract value of abstract location l defined at index i0 is
used at index in, there is a data dependency between i0 and in on l. A formal definition
of data dependency is given below.

Definition 3.17 (Data dependency). Data dependency is quadruple relation (;) ⊆
∆× L̂×∆× (∆→ Ŝ) defined as follows:

i0
l
;φ̂ in iff ∃i0 . . . in ∈ Paths(φ̂), l ∈ L̂.

l ∈ D(i0) ∩ U(in) ∧ ∀k ∈ (0, n).l 6∈ D(ik)
(3)

where Paths(φ̂) is the set of all paths created by transition relation ↪→φ̂: a path p =

p0p1 · · · pn is a sequence of partitioning indices such that p0 ↪→φ̂ p1 ↪→φ̂ · · · ↪→φ̂ pn, then,

Paths(φ̂) = lfpλP.{i0i1 | i0 ↪→φ̂ i1} ∪ {p0p1 · · · pni | p ∈ P ∧ pn ↪→φ̂ i}.

2

The data dependency i0
l
;φ̂ in means that if there exists a path from partitioning

index i0 to in, a value of abstract location l can be defined at i0 and used at in, and there
is no intermediate indices ik that may change the value of l, then a data dependency
exists between partitioning indices i0 and in on location l.

Example 3.18. In the program presented in Example 3.13, we can find two data
dependencies, 10© x

; 11© and 11© x
; 12© as graphically depicted as follows:

10 11 12

x x

We omit the subscript φ̂ from ; when the transition relation is determined without φ̂.
2

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:13

3.8. Sparse Abstract Semantics Function
Using data dependency, we can make abstract semantic function sparse, by propa-
gating between partitioning indices only the abstract values that participate in the
fixpoint computation. Sparse abstract semantic function F̂s, whose definition is given
below, is the same as the original one (1) except that it propagates abstract values
along the data dependency, not along the transition relation:

F̂s(φ̂) = λi ∈ ∆.f̂i(
⊔
i′
l
;φ̂i

φ̂(i′)|l). (4)

Compared to the dense abstract semantic function (1), this definition is different only
in that it is defined over data dependency (;), so we can reuse semantic function f̂i
and its soundness result αS ◦ fi v f̂i ◦ αS from the original analysis design.

The following theorem states that the analysis result with the sparse abstract se-
mantic function is the same as the one of original analysis.

THEOREM 3.19 (CORRECTNESS).

∀i ∈ ∆.∀l ∈ D(i).(lfpF̂s)(i)(l) = (lfpF̂ )(i)(l).

PROOF. Shortly, we will notice that this theorem is a corollary of Theorem 3.23,
where F̂s is an instance of F̂a such that D̂(i) = D(i) and Û(i) = U(i).

The theorem guarantees that the sparse analysis result is identical to the original
result only up to the entries that are defined at every partitioning index. Note that we
can also show the complete equivalence between lfpF̂ and lfpF̂s by reconstructing the
missing entries (see Appendix B).

3.9. Sparse Analysis with Approximated Data Dependency
The sparse analysis designed until Section 3.8 is not practical. The definitions of D and
U are purely mathematical but non-constructive, and they are defined in terms of the
original fixpoint lfpF̂ .

We now design a practical sparse analysis. The practicality is obtained by approxi-
mating the definition and the use sets. Note that the initial precision and soundness
of the original analysis are still preserved even with the approximations if some safety
conditions are satisfied. We discuss the safety conditions in Section 3.9.1. Suppose D̂

and Û are such safe approximations of D and U, respectively. With D̂ and Û, we can
approximate the data dependency.

Definition 3.20 (Approximated Data Dependency). Approximated data dependency
is quadruple relation ( ) ⊆ ∆× L̂×∆× (∆→ Ŝ) defined as follows:

i0
l
 φ̂ in iff ∃i0 . . . in ∈ Paths(φ̂), l ∈ L̂.

l ∈ D̂(i0) ∩ Û(in) ∧ ∀k ∈ (0, n).l 6∈ D̂(ik)

2

The definition is the same as (3) except that it is defined over D̂ and Û. The derived
sparse analysis is to compute the fixpoint of the following abstract semantic function:

F̂a(φ̂) = λi ∈ ∆.f̂i(
⊔
i′
l
 φ̂i

φ̂(i′)|l). (5)

F̂a is the same as F̂s except that F̂a is defined over the approximated data dependency.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Oh et al.

3.9.1. Conditions for Safe Approximations. In order for the approximation to be safe, i.e.,
still lfpF̂ = lfpF̂a, D̂ and Û should satisfy two conditions.

(1) Both D̂(i) and Û(i) are over-approximations of D(i) and U(i), respectively.
(2) Abstract locations that are necessary to generate values of spurious definitions

(D̂(i)− D(i)) should be also included in Û(i).

The first condition is intuitive and we can easily show that the analysis computes
different results if one of them is not an over-approximation. Regarding the second
condition, the following example illustrates what happens when there exists an ab-
stract location which is used to generate spurious definitions but is not included in the
approximated use set.

Formally, safe approximations of definition and use sets are:

Definition 3.21 (Safe Approximations of D and U). We say that D̂ and Û are safe
approximations of D and U, respectively, if and only if

(1) D̂(i) ⊇ D(i) ∧ Û(i) ⊇ U(i)

(2) Û(i) ⊇ d(D̂(i)\D(i))(i)

2

Example 3.22. Suppose that we analyze the following program with the original
analysis designed in Example 3.9:

10©x := &y; 11©∗ p := &z; 12©y := x;

Suppose further that the points-to set for pointer p at 11© is {y} during the original
analysis. Then, according to the analysis definition in Example 3.9, abstract semantic
function f̂i for each control point i is as follows:

f̂10©(ŝ) = ŝ[x 7→ {y}]
f̂11©(ŝ) = ŝ[y 7→ {z}]
f̂12©(ŝ) = ŝ[y 7→ ŝ(x)]

Then, definition sets and use sets are as follows:

D(10©) = {x} U(10©) = ∅
D(11©) = {y} U(11©) = {p}
D(12©) = {y} U(12©) = {x}.

With these definition and use sets, one data dependency 10© x
; 12© is generated as fol-

lows:

10 11 12

x

For a sparse version of the original analysis, we need to approximate the definition
and use sets. Note that, however, not all over-approximations make the sparse analysis
safe.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:15

The following is one example of an over-approximations of the above D and U, yet
unsafe ones.

D̂(10©) = {x} Û(10©) = ∅
D̂(11©) = {x, y} Û(11©) = {p}
D̂(12©) = {y} Û(12©) = {x}

Here, x’s definition at 11© is spurious because of the approximation. With this approxi-
mation, we generate one data dependency 11© x

 12©:

10 11 12

x

Because of the spurious definition of x at 11©, the x’s definition at 10© does not reach to
12©, which makes the subsequent main analysis unsafe.

To fix this problem, we need the second condition of the safe approximations ((2) of
Definition 3.21): we adjust Û to include locations that are necessary to generate values
of spurious definitions. For our example, we make Û(11©) include the spurious definition
of x:

D̂(10©) = {x} Û(10©) = ∅
D̂(11©) = {x, y} Û(11©) = {p, x}
D̂(12©) = {y} Û(12©) = {x}.

With this approximation, we generate two data dependencies 10© x
 11© and 11© x

 12©:

10 11 12

x x

Following these two data dependencies, the abstract value of x at 10© will be propagated
to 12© in the subsequent main analysis. Note that, in the main analysis, x is not modified
at 11©: the approximated definitions (D̂) and uses (Û) are used only for the generation
of data dependencies. The main analysis (fixpoint computation) is performed following
these pre-constructed paths with the original abstract semantic function f̂i that does
not involve spurious definitions. This is why our sparse analysis with approximated
def-use paths does not degrade the analysis precision. 2

Formally, we can prove that the safe approximations D̂ and Û yield the correct sparse
analysis, which the following lemma states:

THEOREM 3.23 (CORRECTNESS). Suppose sparse abstract semantic function F̂a is
derived by safe approximations D̂ and Û. Then,

∀i ∈ ∆.∀l ∈ D̂(i).(lfpF̂a)(i)(l) = (lfpF̂ )(i)(l).

PROOF. See Appendix A.

3.10. Precision Loss with Conventional Def-Use Chains
Our notion of data dependency is different from the conventional notion of def-use
chains. Conventional def-use chains connect each definition to every possible use of
the definition. We can express this def-use chain relation _ as follows:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 Oh et al.

Definition 3.24 (Def-Use Chains).

i0
l
_φ̂ in iff ∃i0 . . . in ∈ Paths(φ̂), l ∈ L̂.

l ∈ D̂(i0) ∩ Û(in) ∧ ∀k ∈ (0, n).l 6∈ D̂must(ik)

where D̂must(i) denotes the set of abstract locations that are “must”-defined (killed) at
i. 2

The only difference from ours is the use of D̂must in place of D̂. While our definition of
data dependency does not degrade the precision of the resulting sparse analysis, this
conventional def-use chains would have made the analysis less precise. The following
example illustrates the case of imprecision.

Example 3.25. Suppose that we analyze the following program with the original
analysis designed in Example 3.9:

10©x := &y; 11©∗ p := &z; 12©y := x;

Suppose further that the points-to set for pointer p at 11© is {x} during the original
analysis. Note that, because of the strong update to x at 11©, the value of x is {z} at 12©
during the original analysis. Suppose that, for sparse analysis, we use the following
approximated definition and use sets during the def-use path construction:

D̂(10©) = {x} D̂must(10©) = {x} Û(10©) = ∅
D̂(11©) = {x, y} D̂must(11©) = ∅ Û(11©) = {p, x, y}
D̂(12©) = {y} D̂must(12©) = {y} Û(12©) = {x}.

With these information, the conventional def-use chains (Definition 3.24) become as
follows:

10 11 12
x

x

x

Please note that the 12© point becomes a join point that degrades the precision of the
subsequent, main analysis: the value of x at 12© is {y} ∪ {z} that is bigger than {z}, the
one that appears in the original analysis.

Meanwhile, our data dependency (Definition 3.20) builds the def-use paths as fol-
lows:

10 11 12

x x

Note that there is no join points in the above data dependencies: the main analysis
along the above data dependencies does not degrade the analysis precision at 12©. 2

3.11. Existing Sparse Analyses as Instances
In this subsection, we show that recent two sparse analysis techniques [Hardekopf
and Lin 2009; 2011] can be understood as specific instances of our framework that
approximate the definition and use sets in certain ways.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:17

Non-Sparse Analysis. Before discussing those two existing sparse techniques, we
first show a simple example that non-sparse analysis (baseline analysis given in (1))
can be also understood as a sparse analysis that approximates definition and use sets
in a very crude way:

D̂(i) = L̂
Û(i) = L̂

That is, we approximate D̂ and Û in a way that all abstract locations are considered as
definitions and uses at every partitioning index. Then, the sparse analysis with such
D̂ and Û is identical to the conventional non-sparse analysis, which brings the full
abstract state (the abstract values of all locations) along all partitioning indices.

Semi-Sparse Analysis. The challenge of sparse analysis in general is that the def-
inition and use sets are not available prior to the analysis. The semi-sparse tech-
nique [Hardekopf and Lin 2009] solves this problem by exploiting the fact that def-use
information for top-level variables (variables that are not address-taken in the pro-
gram) are available before the analysis. Thus, the technique performs sparse analysis
on such variables while using the conventional non-sparse analysis on the other vari-
ables. This technique is conceptually identical to our sparse analysis with the following
D̂ and Û:

D̂(i) = {l ∈ L̂ | ŝ ∈ Ŝ ∧ f̂i(ŝ)(l) 6= ŝ(l)}
Û(i) = dD̂(i)(i)

The D̂(i) includes an abstract location if semantic function f̂i can change the value
of the location for an arbitrary input state ŝ ∈ Ŝ. For example, for statement x := y,
D̂ includes only x and Û includes only y, but for statement ∗p := 1, D̂ and Û include
all abstract locations because p may point to arbitrary locations under arbitrary input
states. Thus, in sparse analysis with such D̂ and Û, some statements such as x := y are
analyzed sparsely but ∗p := 1 is analyzed densely.

Staged-Sparse Analysis. The staged-sparse analysis [Hardekopf and Lin 2011]
solves the challenge of sparse analysis by employing a pre-analysis and computing
conservative def-use information. This idea is formalized in our framework as follows.
First, we compute an over-approximation X̂ of lfpF̂ , i.e., X̂ w lfpF̂ , by a pre-analysis.
Next, we approximate D̂ and Û using X̂:

D̂(i) = {l ∈ L̂ | ∃ŝ v
⊔
i′↪→i X̂(x′). f̂i(ŝ)(l) 6= ŝ(l)}

Û(i) = dD̂(i)(i)

This approximation method is more accurate than that of semi-sparse analysis. For ex-
ample, in statement ∗p := 1, the semi-sparse technique considers all abstract locations
as its definitions. On the other hand, staged-sparse technique considers definitions
only up to X̂. Suppose p may point to {x, y} in X̂. Then, only x and y are considered as
definitions of the statement.

3.12. Designing Sparse Analysis Steps in the Framework
In summary, the design of sparse analysis within our framework is done in the follow-
ing two steps:

(1) Design a non-sparse static analysis based on the abstract interpretation frame-
work. Note that the abstract domain should be a member of the family explained
in Section 3.4.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Oh et al.

(2) Design a method to find a safe approximation D̂ and Û of definition set D and use
set U (Definition 3.21).

In practice, the second step (finding D̂ and Û) is the challenging part. In the following
sections, we show that, for C-like languages, D̂ and Û can be effectively computed by
using a flow-insensitive version of the main analysis. However, it remains to be seen
how for other languages to design an effective such pre-analysis.

4. DESIGNING SPARSE NON-RELATIONAL ANALYSIS
In this section, we present an example on designing sparse analysis for non-relational
numeric analyses for C-like imperative languages. Following Section 3.12, we first de-
fine a non-sparse analysis and then show how to find D̂ and Û that satisfy the safe
approximation conditions (Definition 3.21). The sparse analysis designed in this sec-
tion is the core of our interval domain-based static analyzer, called Intervalsparse, which
will be evaluated in Section 7.

4.1. Step 1: Designing Non-sparse Analysis
Language. For brevity, we restrict our presentation to the following simple subset of

C, where a variable has either an integer value or a pointer:

cmd→ x := e | ∗x := e | {{x < n}}
where e→ n | x | &x | ∗x | e+e

Assignment x := e corresponds to assigning the value of expression e to variable x.
Store ∗x := e performs indirect assignments; the value of e is assigned to the location
that x points to. An assume command {{x < n}}makes the program continue only when
the condition evaluates to true.

Abstract Domain. We consider an analysis that over-approximates the reachable
states for each control point: the abstract domain is a map from C → Ŝ, where C is
the set of control points in the program and Ŝ is a non-relational abstract state such
that P(S+) −−−→←−−−αS

γS
Ŝ:

Ŝ = L̂→ V̂
L̂ = Var

V̂ = Ẑ× P̂
P̂ = P(L̂)

Abstract state Ŝ is a map from abstract locations L̂ to abstract values V̂. An abstract lo-
cation is a program variable. An abstract value is a pair of an abstract integer Ẑ and an
abstract pointer P̂. A set of integers is abstracted into an abstract integer (P(Z) −−−→←−−−αZ

γZ

Ẑ). Note that the abstraction is generic so we can choose any non-relational numeric do-
mains of our interest, such as intervals ( Ẑ = {[l, u] | l, u ∈ Z∪{−∞,+∞}∧l ≤ u}∪{⊥}).
For simplicity, we do not abstract pointers (because they are finite): pointer values are
kept by a points-to set (P̂ = P(L̂)). Other pointer abstractions are also orthogonally
applicable.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:19

Abstract Semantics. The abstract semantics is defined by the least fixpoint of the
following semantic function:

F̂ ∈ (C→ Ŝ)→ (C→ Ŝ)

F̂ (φ̂) = λi ∈ C.f̂i(
⊔
i′↪→i

φ̂(i′))

Note that we suppose the control flows of the program is known and ↪→ does not depend
on analysis states (φ̂). We define the semantic function f̂i ∈ Ŝ → Ŝ as follows: (cmd(i)
denotes the command associated with control point i.)

f̂i(ŝ) =


ŝ[x 7→ Ê(e)(ŝ)] cmd(i) = x := e

ŝ[ŝ(x).P̂ w7→ Ê(e)(ŝ)] cmd(i) = ∗x := e

ŝ[x 7→ 〈ŝ(x).Ẑ uẐ αZ({z ∈ Z|z < n}), ŝ(x).P̂〉] cmd(i) = {{x < n}}

Auxiliary function Ê(e)(ŝ) computes abstract value of e under ŝ. Assignment x := e
updates the value of x. Store ∗x := e weakly updates the value of abstract locations
that ∗x denotes.2 {{x < n}} confines the interval value of x according to the condition.
Ê ∈ e→ Ŝ→ V̂ is defined as follows:

Ê(n)(ŝ) = 〈αZ({n}),⊥〉
Ê(x)(ŝ) = ŝ(x)

Ê(&x)(ŝ) = 〈⊥, {x}〉
Ê(∗x)(ŝ) =

⊔
{ŝ(a) | a ∈ ŝ(x).P̂}

Ê(e1+e2)(ŝ) = 〈v1.Ẑ+̂Ẑv2.Ẑ, v1.P̂ ∪ v2.P̂〉
where v1 = Ê(e1)(ŝ), v2 = Ê(e2)(ŝ)

Note that the above analysis is parameterized by an abstract numeric domain Ẑ and
sound operators +̂Ẑ and uẐ. In this section, we assume that ↪→ is fixed and given prior
to the analysis, which is an acceptable assumption for C-like languages.

4.2. Step 2: Finding Definitions and Uses
The second step is to find safe approximations of definitions and uses. The sparse anal-
ysis framework provides a mathematical definitions regarding correctness but does
not provide how to find safe D̂ and Û. In the rest part of this section, we present a
semantics-based, systematic way to find D̂ and Û.

We propose to find D̂ and Û from a conservative approximation of F̂ . We call the
approximated analysis by pre-analysis. Let D̂pre and F̂pre be the domain and semantic
function of such a pre-analysis, which satisfies the following two conditions:

C→ Ŝ −−−−→←−−−−
αpre

γpre
D̂pre

αpre ◦ F̂ v F̂pre ◦ αpre

By the abstract interpretation framework [Cousot and Cousot 1977; 1979; 1992], such
a pre-analysis is guaranteed to be conservative, i.e., αpre(lfpF̂ ) v lfpF̂pre . As an exam-
ple, in our experiments (Section 7), we use a simple abstraction as follows:

αpre = λX̂.
⊔
{X̂(i) | i ∈ dom(X̂)}

2For brevity, we consider only weak updates. Applying strong update is orthogonal to our sparse analysis
design.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 Oh et al.

The abstract semantic function is defined as

F̂pre = λŝ.
⊔
i∈C

f̂i(ŝ).

The abstraction ignores the control flows of programs and computes a single global
invariant (a.k.a., flow-insensitivity).

We now define D̂ and Û using the pre-analysis result. Let ŝpre ∈ Ŝ be the pre-analysis
result. The definitions of D̂ and Û are derived from the semantic definition of f̂i.

D̂(i) =


{x} cmd(i) = x := e

ŝpre(x).P̂ cmd(i) = ∗x := e
{x} cmd(i) = {{x < n}}

D̂ includes locations whose values are potentially defined (changed). In the definition of
f̂i for x := e and {{x < n}}, we notice that abstract location x may be defined. In ∗x := e,
we see that f̂i may define locations ŝ(x).P̂ for a given input state ŝ at program point
c. Here, we use the pre-analysis: because we cannot have the input state ŝ prior to
the analysis, we instead use its conservative abstraction ŝpre . Such D̂ satisfies the safe
approximation condition (Definition 3.21), because we collect all potentially defined
locations, pre-analysis is conservative, and f̂i is monotone.

Before defining Û, we define an auxiliary function U ∈ e→ Ŝ→ P(L̂). Given expres-
sion e and state ŝ, U(e)(ŝ) finds the set of abstract locations that are referenced during
the evaluation of Ê(e)(ŝ). Thus, U is naturally derived from the definition of Ê .

U(n)(ŝ) = ∅
U(x)(ŝ) = {x}
U(&x)(ŝ) = ∅
U(∗x)(ŝ) = {x} ∪ ŝ(x).P̂

U(e1+e2)(ŝ) = U(e1)(ŝ) ∪ U(e2)(ŝ)

When e is either n or &x, Ê does not refer any abstract location. Because Ê(x)(ŝ) refer-
ences abstract location x, U(x)(ŝ) is defined by {x}. Ê(∗x)(ŝ) references location x and
each location a ∈ ŝ(x), thus the set of referenced locations is {x} ∪ ŝ(x).P̂. Û is defined
as follows:

Û(i) =


U(e)(ŝpre) cmd(i) = x := e

{x} ∪ ŝpre(x).P̂ ∪ U(e)(ŝpre) cmd(i) = ∗x := e
{x} cmd(i) = {{x < n}}

Using ŝpre and U , we collect abstract locations that are potentially used during the
evaluation of e. Because f̂i is defined to refer to abstract location x in ∗x := e and {{x <
n}}, U additionally includes x. Note that, in ∗x := e, Û(c) includes ŝpre(x).P̂ because the
abstract semantics (f̂i’s definition) performs weak updates. Because we define Û(i) in
a way it includes the entire D̂(i), it is easy to verify that Û(i) satisfies the conditions in
Definition 3.21.

LEMMA 4.1. D̂ and Û are safe approximations.

5. DESIGNING SPARSE RELATIONAL ANALYSIS
In this section, we design a sparse relational analysis. We define a family of relational
analyses (Section 5.1) and show a safe approximation of definitions D̂ and uses Û for
the analysis (Section 5.2).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:21

We consider packed relational analysis [Blanchet et al. 2003; Miné 2006b]. A pack
is a semantically related set of variables. We assume a set of variable packs, Packs ⊆
P(Var) such that

⋃
Packs = Var (the packs can overlap), are given by users or a pre-

analysis [Miné 2006b; Cousot et al. 2009]. In a packed relational analysis, abstract
states (Ŝ) map variable packs (Packs) to a relational domain (R̂), i.e., Ŝ = Packs→ R̂.

The distinguishing feature of sparse relational analysis is that definition sets and
use sets are defined in terms of variable packs. For example, in a simple statement
x := 1, all the variable packs that contain x may be defined and used at the same
time, while only variable x may be defined and not used in non-relational analysis. As
a result, data dependencies are also defined in terms of variable packs. We denote a
pack of variables x1, · · · , xn as 〈〈x1, · · · , xn〉〉.

5.1. Step 1: Designing Non-sparse Analysis
We consider a packed relational analysis based on the octagon abstract domain [Miné
2006b]. This is for the clarity of the presentation and the overall idea is applicable to
other relational domains such as the polyhedron [Cousot and Halbwachs 1978].

Language. We consider commands where numeric constants c ∈ Z are enhanced
into constant intervals [a, b], where a ∈ Z ∪ {−∞} and b ∈ Z ∪ {+∞}. This allows not
only modeling non-deterministic behaviors of programs, such as user inputs, but also
simplifying the abstract semantics of relational analysis with variable packs. Formally,
we consider the following commands.

cmd → x := [a, b] | x := ±y + [a, b]

Note that these two types of assignments are the ones that the octagon domain is able
to precisely handle. Other assignment forms can be handled approximately via con-
versions to interval or polyhedron domains [Miné 2006b]. We do not consider pointers:
including pointers in the language does not require novelty but verbosity. We focus
only on the differences between non-relational and relational sparse analysis designs.

Abstract Domain. We consider an analysis that computes an over-approximation of
reachable states for each control point, so the abstract domain is a map from control
points to abstract states, i.e., C→ Ŝ, where C is the set of control points in the program.
In packed relational analyses, the abstract state (Ŝ) is a map from variable packs to
relational domain elements:

Ŝ = Packs→ R̂

We suppose that the following operators are given:

— R̂ ∈ cmd→ R̂→ R̂: a semantic function of the relational domain for commands. For
the octagon domain, the definitions of these operators are available in [Miné 2006b].

— toIntx ∈ Ŝ → Î: a projection function that projects a relational domain element onto
variable x to obtain x’s interval value (̂I: the lattice of intervals). To be safe, toIntx
should satisfy the following condition:

∀ŝ ∈ Ŝ.toIntx(ŝ) w αÎ(
⋂
p∈pack(x){s(x) | s ∈ γR̂(ŝ(p))})

where αÎ is the abstraction function for the lattice of intervals such that P(Z) −−−→←−−−αÎ

γ̂I Î,

αR̂ is the abstraction function for the octagon domain such that P(S) −−−→←−−−αR̂

γR̂ R̂, and
pack(x) is the set of packs that contain x, i.e., pack(x) = {p ∈ Packs | x ∈ p}.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 Oh et al.

Abstract Semantics. The abstract semantics is defined by the least fixpoint of the
following function:

F̂ ∈ (C→ Ŝ)→ (C→ Ŝ)

F̂ (φ̂) = λi ∈ C.f̂i(
⊔
i′↪→i

φ̂(i′))

The abstract semantic function f̂i for the octagon domain is defined as follows:

f̂i(ŝ) = λp ∈ Packs.
R̂(x := [a, b])(ŝ(p)) cmd(c) = x := [a, b] ∧ x ∈ p
R̂(x := ±y + [a, b])(ŝ(p)) cmd(c) = x := ±y + [a, b] ∧ x ∈ p ∧ y ∈ p
R̂(x := ±toInty(ŝ) + [a, b])(ŝ(p)) cmd(c) = x := ±y + [a, b] ∧ x ∈ p ∧ y 6∈ p
ŝ(p) otherwise

The semantics is defined pointwise for each pack p. For statement x := [a, b], we update
the octagon ŝ(p) of pack p if the pack p contains the variable x, otherwise the octagon
for the current pack is not modified. The actual update is performed by R̂. For state-
ment x := ±y + [a, b], if the pack p does not contain the variable x, we do not update
anything. Otherwise, we discern two cases. When p contains the variable y, we can
handle the assignment directly by R̂. When p does not contain y, we handle the assign-
ment by converting y into its interval value. The function toIntx ∈ Ŝ → Î undertakes
the conversion.

5.2. Step 2: Finding Definitions and Uses

We now approximate D̂ and Û. Because the language in this section is pointer-free,
simple syntactic method is enough to find them.

The distinguishing feature of sparse relational analysis is that the entities that are
defined and used are variable packs, not each variable. From the definition of f̂i, we
notice that packs that contain x (denoted by pack(x)) are potentially defined in both
assignments:

D̂(i) =

{
pack(x) cmd(i) = x := [a, b]
pack(x) cmd(i) = x := ±y + [a, b]

We define the use set Û as follows:

Û(i) =

{
pack(x) cmd(i) = x := [a, b]
pack(x) ∪ pack(y) cmd(i) = x := ±y + [a, b]

It is trivial to check that such D̂ and Û satisfy the safety conditions in Definition 3.21.

LEMMA 5.1. D̂ and Û are safe approximations.

6. IMPLEMENTATION TECHNIQUES
In this section, we summarize techniques that we used in the implementation of the
sparse analyzers (for the C language), which will be evaluated in Section 7. Imple-
menting sparse analysis presents unique challenges regarding construction and man-
agement of data dependencies. Because data dependencies for realistic programs can
be very complex, it is a key to practical sparse analyzers to efficiently generate data de-
pendencies. We describe the basic algorithm we used for data dependency generation,
and discuss two issues that we experienced causing significant performance impacts
depending on different implementation choices.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:23

6.1. Generation of Data Dependencies
We use the standard SSA algorithm [Cytron et al. 1991] to generate data dependencies.
For C-like language, because control flows of the program is known a priori, our data
dependency relation can be simplified to the following:

i0
l
 in iff ∃i0 . . . in ∈ Paths, l ∈ L̂.

l ∈ D̂(i0) ∩ Û(in) ∧ ∀k ∈ (0, n).l 6∈ D̂(ik)

where Paths is the set of all paths in the program. Suppose we have computed D̂(i) and
Û(i) for all i. We can generate the data dependencies by propagating each definition
l ∈ D̂(i0) along control flows to its use points (where l ∈ Û(in)) unless l is re-defined,
which can be performed with standard def-use chain generation algorithms such as
reaching definition analysis or SSA algorithms. We use the SSA generation because it
is fast and reduces the size of data dependencies [Wegman and Zadeck 1991].

6.2. Interprocedural Extension
With a semantics-based approach in mind, interprocedural sparse analysis is no more
difficult than its intraprocedural counterpart. Designing a method to find safe defini-
tions and uses for semantic functions regarding procedure calls is all that we need for
interprocedural extension. For example, consider the language and analysis in Section
4 with procedure calls extended:

cmd→ · · · | call(px, e)

Command call(px, e) means that procedure p, whose formal parameter is x, is called
with actual parameter e. Suppose the analysis is context-insensitive.3 Then the ab-
stract semantics for procedure calls is as follows:

f̂i(ŝ) = ŝ[x 7→ Ê(e)(ŝ)]

Simply, the abstract location defined by this semantics is x and uses include the lo-
cations that are referenced inside e. Then, data dependencies are generated over the
entire program in the same way as Section 6.1.

However, during the implementation, we noticed that this natural extension does
not scale in practice. The main problem was due to unexpected spurious dependencies
across procedure boundaries. Consider the following code and suppose we compute
data dependencies for global variable x, which is not used inside procedure h:

int f() { x:=0;1 h(); 2a:=x;}
int h() { ... } (* no use of x *)
int g() { x:=1;3 h(); 4b:=x;}

Data dependencies for x not only include 1
x
 2 and 3

x
 4 but also include spurious

dependencies 1
x
 4 and 3

x
 2, because of spurious control flow paths via the calls to

h:

1

2

3

4
h

x

x

x

x

3Our analyzers that will be evaluated in Section 7 are also context-insensitive.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 Oh et al.

In real C programs, thousands of global variables exist and procedures are called from
many different call-sites, which generates an overwhelming number of spurious de-
pendencies. In our experiments, such spurious dependencies made the sparse analysis
hardly scalable. Staged pointer analysis algorithm [Hardekopf and Lin 2011] takes
this approach but no performance problem was reported; we guess this is because
pointer analysis typically ignores non-pointer statements (by sparse evaluation tech-
niques [Choi et al. 1991; Ramalingam 2002]) and the number of pointer variables are
a small subset of the entire variables. However, our analyzers trace all semantics of C,
i.e., value flows of all types including pointers and numbers.

In our approach, we discern the accessed locations by the callee and its transitively
called procedures from the rest. For the other locations, we draw dependencies from
the call-site directly to the return sites. For example, we generate dependencies for the
above program as follows:

1

2

3

4
hx x

Note that variable x is not propagated to procedure h because h does not use x.
For the interprocedural extension, we use the flow-insensitive analysis (defined in

Section 4.2) to pre-resolve function pointers. Because the pre-analysis is fairly precise4,
the precision loss caused by this approximation of the callgraph would be reasonably
small in practice [Milanova et al. 2004].

6.3. Using BDDs in Representing Data Dependencies
The second practical issue is memory consumption for storing data dependencies.
Analyzing real C programs must deal with hundreds of thousands of statements
and abstract locations. Thus, naive representations for the data dependencies im-
mediately makes memory problems. For example, in analyzing ghostscript-9.00 (the
largest benchmark in Table I), the data dependencies consist of 201 K abstract loca-
tions spanning over 2.8 M statements. Storing such large dependency relation with
a naive set-based implementation, which keeps a map (∈ ∆ × ∆ → P(L̂)), did not
scale. It only worked for programs of moderate sizes with less than 150 KLOC. We
solved this problem with binary decision diagrams (BDDs). Fortunately, the data de-
pendency relation is highly redundant, making it a good application of BDDs. For ex-
ample, 〈c1, c3, l〉 ∈ ( ) and 〈c2, c3, l〉 are different but share the common suffix, and
〈c1, c2, l1〉 and 〈c1, c2, l2〉 are different but share the common prefix. BDDs can effec-
tively share such common suffixes and prefixes. We treat each relation 〈c1, c2, l〉, by
bit-encoding each partitioning index (control point) and abstract location, as a boolean
function that is naturally represented by BDDs. This way of using BDDs greatly re-
duced memory costs. For example, for vim60 (227 KLOC), set-based representation of
data dependencies required more than 24 GB of memory but BDD-implementation just
required 1 GB. No particular dynamic variable ordering was necessary in our case.

7. EXPERIMENTS
In this section, we evaluate the sparse non-relational and relational static analyses
designed in Section 4 and Section 5, respectively. The evaluation was performed on top

4The pointer abstraction of our pre-analysis is basically the same with inclusion-based pointer analysis,
which is the most precise form of flow-insensitive pointer analysis [Hardekopf and Lin 2007]. In addition,
our pre-analysis combines numeric analysis and pointer analysis, which further enhances the precision of
the pointer analysis [Cousot et al. 2009; Balakrishnan and Reps 2004].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:25

Table I. Benchmarks: lines of code (LOC) is obtained by running wc on the source before preprocessing
and macro expansion. Functions reports the number of functions in the source code. Statements
and Blocks report the number of statements and basic blocks in our intermediate representation of
programs (after preprocessing). maxSCC reports the size of the largest strongly connected component
in the callgraph. AbsLocs reports the number of abstract locations that are generated during the interval
domain-based analysis .

Program LOC Functions Statements Blocks maxSCC AbsLocs
gzip-1.2.4a 7K 132 6,446 4,152 2 1,784
bc-1.06 13K 132 10,368 4,731 1 1,619
tar-1.13 20K 221 12,199 8,586 13 3,245
less-382 23K 382 23,367 9,207 46 3,658
make-3.76.1 27K 190 14,010 9,094 57 4,527
wget-1.9 35K 433 28,958 14,537 13 6,675
screen-4.0.2 45K 588 39,693 29,498 65 12,566
a2ps-4.14 64K 980 86,867 27,565 6 17,684
sendmail-8.13.6 130K 756 76,630 52,505 60 19,135
nethack-3.3.0 211K 2,207 237,427 157,645 997 54,989
vim60 227K 2,770 150,950 107,629 1,668 40,979
emacs-22.1 399K 3,388 204,865 161,118 1,554 66,413
python-2.5.1 435K 2,996 241,511 99,014 723 51,859
linux-3.0 710K 13,856 345,407 300,203 493 139,667
gimp-2.6 959K 11,728 1,482,230 286,588 2 190,806
ghostscript-9.00 1,363K 12,993 2,891,500 342,293 39 201,161

of SPARROW [Jhee et al. 2008; Oh and Yi 2010; Oh et al. 2011; Oh and Yi 2011; Oh
et al. 2012], an industrial-strength static analyzer for C programs.

For the non-relational analysis, we use the interval domain [Cousot and Cousot
1977], a representative non-relational domain that is widely used in practice [Bal-
akrishnan and Reps 2004; Jung et al. 2005; Blanchet et al. 2003; Cousot et al. 2009;
Allamigeon et al. 2006]. For the relational analysis, we use the octagon domain [Miné
2006b], a representative relational domain whose effectiveness is well-known in prac-
tice [Blanchet et al. 2003; Cousot et al. 2009; Venet and Brat 2004; Lee et al. 2012].

We have analyzed 16 software packages. Table I shows the benchmark programs.
The benchmarks are various open-source applications, and most of them are from
GNU open-source projects. The linux kernel includes only a few drivers (keyboard,
power management, block device, and terminal) but includes many other modules such
as file system, memory management, x86 architecture, and so on. The analyses were
performed globally (whole-program analysis); the entire program is analyzed start-
ing from procedure main (for linux, start kernel). In all analyses, we used handcrafted
function stubs for standard library calls. For other unknown procedure calls to external
code, we assumed that the procedure returns arbitrary values and has no side-effect.
Procedures that are unreachable from the main procedure, such as callbacks, are made
to be explicitly called from the main procedure. All experiments were done on a Linux
2.6 system running on a single core Intel 3.07 GHz box with 24 GB of main memory.

7.1. Interval Domain-based Sparse Analysis
Setting. The baseline analyzer, Intervalbase, is the global abstract interpretation en-

gine of SPARROW. The abstract domain of the analysis is an extension of the one de-
fined in Section 4 to support additional C features such as arrays and structures. The
analysis abstracts an array by a set of tuples of base address, offset, and size. Abstrac-
tion of dynamically allocated arrays is similarly handled except that base addresses
are abstracted by their allocation-sites. A structure is abstracted by a tuple of base ad-
dress and set of field locations (the analysis is field-sensitive). The fixpoint is computed
by a worklist algorithm using the conventional widening operator [Cousot and Cousot
1977] for interval domains. Details of the analysis can be found in [Oh et al. 2011]. The

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 Oh et al.

Table II. Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the
various versions of analyses.∞means the analysis ran out of time (exceeded 24 hour time limit). Dep and Fix reports
the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1
is the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla.
Spd↑2 is the speed-up of Intervalsparse over Intervalbase. Mem↓2 shows the memory savings of Intervalsparse over
Intervalbase. D̂(i) and Û(i) show the average size of definition sets and use sets at i, respectively.

Programs LOC Intervalvanilla Intervalbase Spd↑1 Mem↓1
Time Mem Time Mem

gzip-1.2.4a 7K 772 240 14 65 55 x 73 %
bc-1.06 13K 1,270 276 96 126 13 x 54 %
tar-1.13 20K 12,947 881 338 177 38 x 80 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 %
screen-4.0.2 45K ∞ N/A 31,324 3,996 N/A N/A
a2ps-4.14 64K ∞ N/A 3,200 1,392 N/A N/A
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A
nethack-3.3.0 211K ∞ N/A ∞ N/A N/A N/A
vim60 227K ∞ N/A ∞ N/A N/A N/A
emacs-22.1 399K ∞ N/A ∞ N/A N/A N/A
python-2.5.1 435K ∞ N/A ∞ N/A N/A N/A
linux-3.0 710K ∞ N/A ∞ N/A N/A N/A
gimp-2.6 959K ∞ N/A ∞ N/A N/A N/A
ghostscript-9.00 1,363K ∞ N/A ∞ N/A N/A N/A

Programs LOC Intervalsparse Spd↑2 Mem↓2
Dep Fix Total Mem D̂(i) Û(i)

gzip-1.2.4a 7K 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K 31 9 40 353 2.6 2.8 80 x 75 %
sendmail-8.13.6 130K 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

analysis is designed to be general purpose: it accepts full set of (ANSI and GNU) C, in-
cluding dynamic memory allocation and recursion, which is sometimes not considered
in domain-specific analyzers [Blanchet et al. 2003; Miné 2006a; Cousot et al. 2009].

The baseline analyzer is not a straw-man but much engineering effort has been
put to its implementation. It adopts a set of well-known cost reduction techniques in
static analysis such as efficient worklist/widening strategies [Bourdoncle 1993] and
selective memory operators [Blanchet et al. 2003]. In particular, the analysis exploits
the technique of localization [Rinetzky et al. 2005; Yang et al. 2008; Oh et al. 2011],
which localizes the analysis so that each code block is analyzed with only the to-be-
accessed parts of the input state. We use the access-based technique [Oh et al. 2011;
Oh and Yi 2011].

From the baseline, we made Intervalvanilla and Intervalsparse. Intervalvanilla is identical
to Intervalbase except that Intervalvanilla does not perform the access-based localization.
We compare the performance between Intervalvanilla and Intervalbase just to check that
our baseline analyzer is not a straw-man. Intervalsparse is the sparse version derived

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:27

Table III. Performance of octagon analysis: time (in seconds) and peak memory consumption (in megabytes)
of the various versions of analyses. ∞ means the analysis ran out of time (exceeded 24 hour time limit). Dep
and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the
sparse analysis. Spd↑1 is the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of
Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase. Mem↓2 shows the memory
savings of Intervalsparse over Intervalbase. D̂(i) and Û(i) show the average size of definition sets and use sets,
respectively.

Programs LOC Octagonvanilla Octagonbase Spd↑1 Mem↓1
Time Mem Time Mem

gzip-1.2.4a 7K 2,078 2,832 273 1,072 8 x 62 %
bc-1.06 13K 9,536 6,987 1,065 3,230 9 x 54 %
tar-1.13 20K ∞ N/A 9,566 5,963 N/A N/A
less-382 23K ∞ N/A 16,121 8,410 N/A N/A
make-3.76.1 27K ∞ N/A 17,724 12,771 N/A N/A
wget-1.9 35K ∞ N/A 15,998 9,363 N/A N/A
screen-4.0.2 45K ∞ N/A ∞ N/A N/A N/A
a2ps-4.14 64K ∞ N/A ∞ N/A N/A N/A
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A

Programs LOC Octagonsparse Spd↑2 Mem↓2
Dep Fix Total Mem D̂(i) Û(i)

gzip-1.2.4a 7K 7 14 21 269 13.8 14.5 13 x 75 %
bc-1.06 13K 20 35 55 358 25.2 31.7 19 x 89 %
tar-1.13 20K 55 133 188 526 38.3 39.3 51 x 91 %
less-382 23K 92 340 432 458 42.6 45.4 37 x 95 %
make-3.76.1 27K 91 240 331 666 51.4 55.7 53 x 95 %
wget-1.9 35K 107 181 288 646 31.9 32.9 56 x 93 %
screen-4.0.2 45K 2,452 13,981 16,433 9,199 372.4 376.1 N/A N/A
a2ps-4.14 64K 296 8,271 8,566 1,996 97.7 99.0 N/A N/A
sendmail-8.13.6 130K 7,256 57,552 64,808 29,658 467.6 492.3 N/A N/A

from the baseline. The sparse analysis consists of three steps: pre-analysis (to approx-
imate def-use sets), data dependency generation, and actual fixpoint computation. As
described in Section 4, we use a flow-insensitive pre-analysis. The fixpoint of sparse
abstract semantic function is computed by a worklist-based fixpoint algorithm. The
analyzers are written in OCaml. We use the BuDDy library [Lind-Nielson ] for the
BDD implementation.

Results. Table II gives the analysis time and peak memory consumption of the
three analyzers. Because the analyzers share a common frontend, we report only the
analysis time. For Intervalbase, the time includes the pre-analysis [Oh et al. 2011]. For
Intervalsparse, Dep includes times for pre-analysis and data dependency generation. Fix
represent the time for fixpoint computation of the sparse abstract semantic function.

The results show that Intervalbase already has a competitive performance: it is
faster than Intervalvanilla by 8–55x, saving peak memory consumption by 54–85%.
Intervalvanilla scales to 35 KLOC before running out of time limit (24 hours). In contrast,
Intervalbase scales to 64 KLOC.

Intervalsparse is faster than Intervalbase by 5–110x and saves memory by 3–92%. In
particular, the analysis’ scalability has been remarkably improved: Intervalsparse scales
to 1.4M LOC, which is an order of magnitude larger than that of Intervalbase.

There are some counterintuitive results. First, the analysis time for Intervalsparse
does not strictly depend on program sizes. For example, analyzing emacs-22.1
(399 KLOC) requires 10 hours, taking six times more than analyzing ghostscript-9.00
(1,363 KLOC). This is mainly because some real C programs have unexpectedly large
recursive call cycles [Lattner et al. 2007; Yu et al. 2010; Oh and Yi 2011]. Column
maxSCC in Table I reports the sizes of the largest strongly connected component in
the callgraph. Note that some programs (such as nethack-3.3.0, vim60, and emacs-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:28 Oh et al.

22.1) have a large cycle that contains hundreds or even thousands of procedures. Such
big SCCs markedly increase the analysis cost because the large cyclic dependencies
among procedures make data dependencies much more complex. Thus, the analysis
for gimp-2.6 (959 KLOC) or ghostscript-9.00 (1,363 KLOC), which have little recursion,
is even faster than python-2.5.1 (435 KLOC) or nethack-3.3.0 (211 KLOC), which have
large recursive cycles.

Second, data dependency generation takes longer time than actual fixpoint compu-
tation. For example, data dependency generation for ghostscript-9.00 takes 14,116 s
but the fixpoint is computed in 698 s. This seemingly unbalanced timing results are
partly because of the uses of BDDs in dependency construction. While BDD dramati-
cally saves memory costs, set operations for BDDs such as addition and removal are
noticeably slower than usual set operations. Especially, large programs are more influ-
enced by this characteristic because their data dependency generation is more complex
and more BDD-operations are involved. However, thanks to the space-effectiveness of
BDDs, our sparse analysis does not steeply increase memory consumption as program
sizes increase.

7.2. Octagon Domain-based Sparse Analysis
Setting. We implemented octagon domain-based static analyzers Octagonvanilla,

Octagonbase, and Octagonsparse by replacing interval domains of SPARROW with octagon
domains. Octagonbase performs the access-based localization [Oh et al. 2011] in terms
of variable packs. Octagonvanilla is the same as Octagonbase except for the localization.
Octagonsparse is the sparse version of Octagonbase. To represent octagon domains, we
used the Apron library [Jeannet and Miné 2009].

In all experiments, we used a syntax-directed packing strategy. Our packing heuris-
tic is similar to Miné’s approach [Miné 2006b; Cousot et al. 2009], which groups ab-
stract locations that have syntactic locality. For examples, abstract locations involved
in the linear expressions or loops are grouped together. Scope of the locality is lim-
ited within each of syntactic C blocks. We also group abstract locations involved in
actual and formal parameters, which is necessary to capture relations across proce-
dure boundaries. Large packs whose sizes exceed a threshold (10) were split down into
smaller ones.

Results. While Octagonvanilla requires an extremely large amount of time and mem-
ory, Octagonbase makes the analysis realistic by leveraging the access-based localiza-
tion. Octagonbase is able to analyze 35 KLOC within 5 hours and 10GB of memory.
With the localization, analysis speed of Octagonbase increases by 8x–9x and memory
consumption decreases by 54%–62%. Though Octagonbase saves a lot of memory, the
analysis is still not scalable at all. For example, tar-1.13 requires 6 times more mem-
ory than gzip-1.2.4a.

Thanks to our sparse analysis technique, Octagonsparse becomes more practical and
scales to 130 KLOC within 18 hours and 29 GB of memory consumption. Octagonsparse
is 13–56x faster than Octagonbase and saves memory consumption by 75%–95%.

7.3. Discussion
Sparsity. We discuss the relation between performance and sparsity. Column D̂(i)

and Û(i) in Table II and Table III show how many abstract locations are defined and
used for each basic block on average. It clearly shows the key observation in sparse
analysis for real programs; only a few abstract locations are defined and used in each
program point. For example, the interval domain-based analysis of a2ps-4.14 defines
and uses only 0.1% of abstract locations at one program point.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:29

One interesting observation from the experiment results is that the analysis per-
formance is more dependent on the sparsity than the program size. For instance,
even though ghostscript-9.00 is 3.5 times bigger than emacs-22.1 in terms of LOC,
ghostscript-9.00 takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference on sparsity; average D̂(i) size (and Û(i) size) of emacs-22.1 is 30
times bigger than the one of ghostscript-9.00.

Variable Packing. For maximal precision, the packing strategy should be more
carefully devised for each target program. However, note that our purpose of experi-
ments is to show relative performance of Octagonsparse over Octagonbase, and we ap-
plied the same packing strategy for all analyzers. Though our packing strategy is not
specialized to each program, the packing strategy reasonably groups logically related
variables. The average size of packs is 5–7 for our benchmarks. Domain-specific pack-
ing strategies, such as ones used in Astrée [Miné 2006b] or CGS [Venet and Brat 2004],
reports the similar results: 3–4 [Miné 2006b] or 5 [Venet and Brat 2004].

Precision Improvement. When the analysis uses widening, our sparse analysis
even improves the analysis precision. Given original non-sparse analysis F̂ and its
sparse version F̂s, our theoretical framework guarantees that their least fixpoint solu-
tions are equivalent, i.e., lfpF̂ ≡ lfpF̂s. However, when the abstract domain is of infi-
nite height (e.g., interval domain) and the analysis uses widening [Cousot and Cousot
1977], the sparse analysis is often more precise than its non-sparse counterpart. For
instance, in our experiments, we observed that, for some programs, the sparse analysis
more reduces the number of buffer-overrun alarms than the non-sparse analysis does.
For example, the following table reports the number of buffer-overrun alarms from
non-sparse and sparse versions of SPARROW for some benchmark programs:

Program #buffer-overrun alarms
non-sparse SPARROW sparse SPARROW

tar-1.13 968 942
less-382 661 654
make-3.76.1 1,624 1,524

The reason for precision improvement is because widening is less frequently applied
in the sparse analysis than in the non-sparse one. In experiments, we found that a
typical case happens in nested loops. For instance, consider the following code:

1 int main()
2 {
3 int a[5][10];
4 for (i=0;i<5;i++) // outer loop
5 for (j=0;j<10;j++) // inner loop
6 a[i][j] = 0; // buffer access
7 }

Suppose that we analyze the program with the interval domain and the following sim-
ple widening operator for intervals:

[l, u]O[l′, u′] = [if (l′ < l) then −∞ else l, if (u′ > u) then +∞ else u].

Let us first consider the case of the non-sparse analysis, which works over the control
flow graph of the program: (gray nodes represent headers of flow cycles.)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30 Oh et al.

i=0 i<5 j=0 j<10 a[i][j]=0 j++ i++

In practice, the widening is usually applied at the headers (gray nodes) of flow cycles.
Thus, in a non-sparse interval analysis, the value of variable i is widened at both loop
headers. In particular, i is widened at the header of the inner loop, leading to the
analysis result i = [0,+∞]. At the first entrance of the inner loop, i has interval value
[0, 0]. At the second iteration, i has [0, 4]. These analysis results are combined with
widening [0, 0]O[0, 4] = [0,+∞], which is not strong enough to prove that the buffer
access is safe.

On the other hand, the sparse interval analysis does not apply widening to i at
the inner loop. The sparse analysis works over the data dependencies of the program,
which is depicted as follows:

i=0 i<5 i++ j=0 j<10 j++

a[i][j]=0

i i

i

j j

j

i j

Note that the dependency loops for variable i and j are completely separated, so that
the value of i is not corrupted by the dependency loop for j. As a result, the sparse
analysis can infer that i has [0, 4] at the buffer access statement.

8. RELATED WORK
Existing Sparse Analysis Techniques. Our framework extends the previous

sparse analysis framework [Oh et al. 2012] in two ways. While the previous frame-
work only supports “C-like” languages and is applicable to static analysis that uses
a particular trace partitioning, our framework is general to support various program-
ming languages (such as higher-order or object-oriented languages) and arbitrary trace
partitioning.

Other than [Oh et al. 2012], there is no general theory for sparse analysis design.
The technique of sparse analysis, which propagates individual abstract values from
their definitions to uses, has been developed mostly in the dataflow analysis commu-
nity [Reif and Lewis 1977; Wegman and Zadeck 1991; Dhamdhere et al. 1992; Hard-
ekopf and Lin 2009; 2011]. Reif and Lewis developed a sparse analysis algorithm for
constant propagation [Reif and Lewis 1977] and Wegman et al. extended it to con-
ditional constant propagation [Wegman and Zadeck 1991]. Dhamdhere et al. showed
how to perform sparse partial redundancy elimination [Dhamdhere et al. 1992]. These
algorithms are relatively straightforward because they assume particular dataflow
analysis problems for simple pointer-free imperative languages. Sparse analysis with
pointers has been recently proposed in efforts to improve the flow-sensitive pointer
analysis [Hardekopf and Lin 2009; 2011; Li et al. 2011]. Hardekopf et al. presented

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:31

the semi-sparse pointer analysis algorithm [Hardekopf and Lin 2009] and showed, for
the first time, that flow-sensitive pointer analysis can scale to large code bases (up to
474 KLOC). After that, flow-sensitive pointer analysis becomes scalable even to mil-
lions of lines of code via staged sparse analysis techniques [Hardekopf and Lin 2011;
Li et al. 2011]. However, these algorithms are also tightly coupled with particular
(pointer) analyses and it is not obvious how to generalize them to arbitrarily semantic
analysis. In addition, we showed in Section 3.11 that these two sparse techniques can
be explained as instances of our framework.

On the other hand, sparse analysis techniques have not been adequately studied
in the semantic-based static analysis community (abstract interpretation). As a re-
sult, existing static analyzers (e.g, Astrée [Blanchet et al. 2003], CGS [Venet and Brat
2004], SPARROW [Jhee et al. 2008]) designed by abstract interpretation are all non-
sparse. In this article, we present a general sparse analysis design theory on top of
abstract interpretation, contributing to the sparse analysis literature in three ways:
(1) We identify a family of static analysis that can be transformed into its sparse ver-
sions while preserving the original precision and soundness; (2) We formally present
the framework and prove that the resulting sparse analysis is correct. Previously, the
correctness of sparse analysis has been only informally argued (e.g., [Hardekopf and
Lin 2011]); (3) We show that sparse analysis can be applicable not only to imperative
languages but also to arbitrary (e.g., functional) languages. Previously, sparse analysis
has been applied only to imperative languages.

Sparse evaluation techniques [Choi et al. 1991; Ramalingam 2002; Cytron and Fer-
rante 1995; Hind and Pioli 1998] are general but they take a coarse-grained approach
to sparsity. The goal of sparse evaluation is to remove statements whose abstract se-
mantics is identity function. For example, in typical pointer analyses, statements for
numerical computation are considered as identity and sparse evaluation techniques
remove those statements before analysis begins. Unlike previous sparse analysis tech-
niques, sparse evaluation techniques such as sparse evaluation graphs [Choi et al.
1991] and compact evaluation graphs [Ramalingam 2002] are general within the
dataflow analysis framework [Kam and Ullman 1977]. However, sparse evaluations
are coarse-grained in that they remove identity semantic functions as a whole but the
entire abstract states are still propagated as a unit from program point to program
point. Thus, sparse evaluation techniques are not effective when the underlying anal-
ysis does not have many identity functions, which is usually the case for static anal-
yses that consider “full” semantics, including numbers and pointers. Our framework
provides a method to obtain fine-grained sparse analyses in general settings.

Existing localization techniques [Rinetzky et al. 2005; Might and Shivers 2006; Yang
et al. 2008; Oh et al. 2011] are less powerful than our sparse analysis framework. They
can be understood as only “spatial” localizations. When analyzing code blocks such as
procedure bodies, localization attempts to remove irrelevant parts of abstract mem-
ories that will not be used during the analysis. Our sparse analysis subsumes this
spatial localization. Our sparse analysis performs additional “temporal” localization
too in the sense that adjacent statements S1 and S2 need not to be analyzed in or-
der if there is no semantic dependencies between them. Our sparse analysis can be
understood as doing both spatial and temporal localizations.

Recently, the idea of sparse analysis has been applied to verification of concurrent
programs [Farzan and Kincaid 2012; Farzan et al. 2013]. The authors use a sparse
representation (called data flow graphs) of concurrent programs, which simplifies the
verification task of unbounded multi-threaded programs.

Scalable Global Static Analyzers. Our interval and octagon domain-based ana-
lyzers achieve higher scalability (up to 1 MLOC and 130 KLOC, respectively) than the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 Oh et al.

previous general-purpose global analyzers. Zitser et al. [Zitser et al. 2004] report that
PolySpace C Verifier [MathWorks ], a commercial tool for detecting various runtime
errors, cannot analyze sendmail because of scalability problems. Both our interval and
octagon domain-based analyzers can analyze sendmail. Airac [Jung et al. 2005; Oh
2009], a general-purpose interval domain-based global static analyzer, scales only to
30 KLOC in global analysis. Recently, a significant progress has been reported by Oh
et al. [Oh et al. 2011], but it still does not scale over 120 KLOC. Other similar (interval
domain-based) analyzers are also not scalable to large code bases [Allamigeon et al.
2006; Balakrishnan and Reps 2004]. Nevertheless, there have been scalable domain-
specific static analyzers, like Astrée [Blanchet et al. 2003; Cousot et al. 2009] and
CGS [Venet and Brat 2004], which scale to hundreds of thousands lines of code. How-
ever, Astrée targets programs that do not have recursion and backward gotos, which
enables a very efficient interpretation-based analysis [Cousot et al. 2009], and CGS
is not fully flow-sensitive [Venet and Brat 2004]. There are other summary-based ap-
proaches [Dillig et al. 2008; 2011] for scalable global analysis, which are independent
of our abstract interpretation-based approach.

9. CONCLUSION
9.1. Summary
We have presented a framework for sparse analysis. Given a large class of static anal-
yses defined by abstract interpretation, our framework provides how to transform the
analysis into its sparse version while preserving the soundness and precision of the
original analysis. We have formally presented the framework, designed two instance
analyses for the C language, and experimentally showed that the sparse versions of
the instance analyses far exceed the performance of non-sparse versions in a realistic
setting.

Our results suggest the following guideline in designing sound, precise, yet scalable
global static analyzers: analysis designers first use the abstract interpretation frame-
work to have a sound and arbitrarily precise global static analyzer. The static analysis
in this step is sound and precise but often unscalable. Next, analysis designers use
the presented sparse analysis framework to improve the scalability. In contrast to the
common sense in static analysis that scalability is obtained by compromising the anal-
ysis’ precision or soundness, the resulting sparse analysis still preserves the original
analysis’ precision and soundness.

9.2. Open Issues
(1) Practical implementation for languages other than C: In this article, we have

demonstrated the framework only for the C language. Applying our framework for
other languages may be more difficult than that for C. For instance, for dynamic
languages such as JavaScript, our simple flow-insensitive pre-analysis may not be
effective, since too imprecise analyses can take much time for those languages.
Designing a pre-analysis that is cheap yet precise for other languages remains an
open problem.

(2) Practical implementation with arbitrary trace partitioning: Though our theoreti-
cal framework is generally applicable to arbitrary trace partitioning (e.g., context-
sensitivity), we demonstrated the effectiveness only for flow-sensitive and context-
insensitive analysis. Our framework leaves out details that would need to be solved
for a practical implementation of, for example, context-sensitive sparse analysis.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:33

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIP) (No. NRF-2008-0062609).

REFERENCES
ALLAMIGEON, X., GODARD, W., AND HYMANS, C. 2006. Static analysis of string manipulations in critical

embedded C programs. In Proceedings of the International Symposium on Static Analysis. 35–51.
BALAKRISHNAN, G. AND REPS, T. 2004. Analyzing memory accesses in x86 binary executables. In Proceed-

ings of the International Conference on Compiler Construction. 5–23.
BLANCHET, B., COUSOT, P., COUSOT, R., FERET, J., MAUBORGNE, L., MINÉ, A., MONNIAUX, D., AND RI-

VAL, X. 2003. A static analyzer for large safety-critical software. In Proceedings of the ACM SIGPLAN-
SIGACT Conference on Programming Language Design and Implementation. 196–207.

BOURDONCLE, F. 1993. Efficient chaotic iteration strategies with widenings. In Proceedings of the Interna-
tional Conference on Formal Methods in Programming and their Applications. 128–141.

CHASE, D. R., WEGMAN, M., AND ZADECK, F. K. 1990. Analysis of pointers and structures. In Proceedings
of the ACM SIGPLAN conference on Programming language design and implementation. 296–310.

CHOI, J.-D., CYTRON, R., AND FERRANTE, J. 1991. Automatic construction of sparse data flow evalua-
tion graphs. In Proceedings of the ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. 55–66.

CHOI, J.-D., SARKAR, V., AND SCHONBERG, E. 1996. Incremental computation of static single assignment
form. In Proceedings of the 6th International Conference on Compiler Construction. CC ’96. Springer-
Verlag, London, UK, UK, 223–237.

COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proceedings of The ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. 238–252.

COUSOT, P. AND COUSOT, R. 1979. Systematic design of program analysis frameworks. In Conference
Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. ACM Press, New York, NY, San Antonio, Texas, 269–282.

COUSOT, P. AND COUSOT, R. 1992. Abstract interpretation frameworks. J. Log. Comput. 2, 4, 511–547.
COUSOT, P., COUSOT, R., FERET, J., MAUBORGNE, L., MINÉ, A., AND RIVAL, X. 2009. Why does astre scale

up? Formal Methods in System Design 35, 3, 229–264.
COUSOT, P. AND HALBWACHS, N. 1978. Automatic discovery of linear restraints among variables of a pro-

gram. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM Press, New York, NY, Tucson, Arizona, 84–97.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently com-
puting static single assignment form and the control dependence graph. ACM Trans on Programming
Languages and Systems 13, 451–490.

CYTRON, R. K. AND FERRANTE, J. 1995. Efficiently computing φ-nodes on-the-fly. ACM Trans on Program-
ming Languages and Systems 17, 487–506.

DHAMDHERE, D. M., ROSEN, B. K., AND ZADECK, F. K. 1992. How to analyze large programs efficiently
and informatively. In Proceedings of the ACM SIGPLAN conference on Programming language design
and implementation. PLDI ’92. ACM, New York, NY, USA, 212–223.

DILLIG, I., DILLIG, T., AND AIKEN, A. 2008. Sound, complete and scalable path-sensitive analysis. In Pro-
ceedings of the 2008 ACM SIGPLAN conference on Programming language design and implementation.
PLDI ’08. ACM, New York, NY, USA, 270–280.

DILLIG, I., DILLIG, T., AND AIKEN, A. 2011. Precise reasoning for programs using containers. In Proceed-
ings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
POPL ’11. ACM, New York, NY, USA, 187–200.

FARZAN, A. AND KINCAID, Z. 2012. Verification of parameterized concurrent programs by modular reason-
ing about data and control. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. POPL ’12. ACM, New York, NY, USA, 297–308.

FARZAN, A., KINCAID, Z., AND PODELSKI, A. 2013. Inductive data flow graphs. In Proceedings of the 40th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. POPL ’13. ACM,
New York, NY, USA, 129–142.

HARDEKOPF, B. AND LIN, C. 2007. The ant and the grasshopper: fast and accurate pointer analysis for mil-
lions of lines of code. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language
design and implementation. PLDI ’07. ACM, New York, NY, USA, 290–299.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:34 Oh et al.

HARDEKOPF, B. AND LIN, C. 2009. Semi-sparse flow-sensitive pointer analysis. In Proceedings of The ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 226–238.

HARDEKOPF, B. AND LIN, C. 2011. Flow-sensitive pointer analysis for millions of lines of code. In Proceed-
ings of the 9th Annual IEEE/ACM International Symposium on Code Generation and Optimization.
289–298.

HIND, M. AND PIOLI, A. 1998. Assessing the effects of flow-sensitivity on pointer alias analyses. In Proceed-
ings of the International Symposium on Static Analysis. Springer-Verlag, 57–81.

JEANNET, B. AND MINÉ, A. 2009. Apron: A library of numerical abstract domains for static analysis. In In
Computer Aided Verification, CAV’2009. 661–667.

JHEE, Y., JIN, M., JUNG, Y., KIM, D., KONG, S., LEE, H., OH, H., PARK, D., AND YI., K. 2008. Abstract
interpretation + impure catalysts: Our Sparrow experience. Presentation at the Workshop of the 30
Years of Abstract Interpretation, San Francisco, ropas.snu.ac.kr/~kwang/paper/30yai-08.pdf.

JOHNSON, R. AND PINGALI, K. 1993. Dependence-based program analysis. In Proceedings of the ACM SIG-
PLAN conference on Programming language design and implementation. 78–89.

JUNG, Y., KIM, J., SHIN, J., AND YI, K. 2005. Taming false alarms from a domain-unaware C analyzer by
a bayesian statistical post analysis. In Proceedings of the International Symposium on Static Analysis.
203–217.

KAM, J. B. AND ULLMAN, J. D. 1977. Monotone data flow analysis frameworks. Acta Informatica 7, 3,
305–317.

LATTNER, C., LENHARTH, A., AND ADVE, V. 2007. Making Context-Sensitive Points-to Analysis with Heap
Cloning Practical For The Real World. In Proceedings of the 2007 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’07). San Diego, California.

LEE, W., LEE, W., AND YI, K. 2012. Sound non-statistical clustering of static analysis alarms. In VMCAI
2012: 13th International Conference on Verification, Model Checking, and Abstract Interpretation. Lec-
ture Notes in Computer Science Series, vol. 7148. Springer, 299–314.

LI, L., CIFUENTES, C., AND KEYNES, N. 2011. Boosting the performance of flow-sensitive points-to anal-
ysis using value flow. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering. ESEC/FSE ’11. ACM, New York, NY, USA, 343–353.

LIND-NIELSON, J. BuDDy, a binary decision diagram package.
MATHWORKS. Polyspace embedded software verification. http://www.mathworks.com/products/

polyspace/index.html.
MAUBORGNE, L. AND RIVAL, X. 2005. Trace partitioning in abstract interpretation based static analyzers.

In Proceedings of European Symposium on Programming, M. Sagiv, Ed. Lecture Notes in Computer
Science Series, vol. 3444. Springer-Verlag, 5–20.

MIGHT, M. AND SHIVERS, O. 2006. Improving flow analyses via ΓCFA: Abstract garbage collection and
counting. In Proceedings of the ACM SIGPLAN-SIGACT International Conference on Functional Pro-
gramming. 13–25.

MILANOVA, A., ROUNTEV, A., AND RYDER, B. G. 2004. Precise and efficient call graph construction for c
programs with function pointers. Journal of Automated Software Engineering.

MINÉ, A. 2006a. Field-sensitive value analysis of embedded C programs with union types and pointer arith-
metics. In ACM SIGPLAN/SIGBED Conf. on Languages, Compilers, and Tools for Embedded Systems
(LCTES’06). ACM Press, 54–63.

MINÉ, A. 2006b. The Octagon Abstract Domain. Higher-Order and Symbolic Computation 19, 1, 31–100.
OH, H. 2009. Large spurious cycle in global static analyses and its algorithmic mitigation. In Proceedings

of the Asian Symposium on Programming Languages and Systems. Lecture Notes in Computer Science
Series, vol. 5904. Springer-Verlag, Seoul, Korea, 14–29.

OH, H., BRUTSCHY, L., AND YI, K. 2011. Access analysis-based tight localization of abstract memories. In
VMCAI 2011: 12th International Conference on Verification, Model Checking, and Abstract Interpreta-
tion. Lecture Notes in Computer Science Series, vol. 6538. Springer, 356–370.

OH, H., HEO, K., LEE, W., LEE, W., AND YI, K. 2012. Design and implementation of sparse global analyses
for C-like languages. In Proceedings of The ACM SIGPLAN Conference on Programming Language
Design and Implementation.

OH, H. AND YI, K. 2010. An algorithmic mitigation of large spurious interprocedural cycles in static analy-
sis. Software: Practice and Experience 40, 8, 585–603.

OH, H. AND YI, K. 2011. Access-based localization with bypassing. In APLAS 2011: 9th Asian Symposium on
Programming Languages and Systems. Lecture Notes in Computer Science Series, vol. 7078. Springer,
50–65.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:35

RAMALINGAM, G. 2002. On sparse evaluation representations. Theoretical Computer Science 277, 1-2, 119–
147.

REIF, J. H. AND LEWIS, H. R. 1977. Symbolic evaluation and the global value graph. In Proceedings of the
4th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 104–118.

RINETZKY, N., BAUER, J., REPS, T., SAGIV, M., AND WILHELM, R. 2005. A semantics for procedure local
heaps and its abstractions. In Proceedings of The ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 296–309.

TOK, T. B., GUYER, S. Z., AND LIN, C. 2006. Efficient flow-sensitive interprocedural data-flow analysis
in the presence of pointers. In Proceedings of the International Conference on Compiler Construction.
17–31.

VENET, A. AND BRAT, G. 2004. Precise and efficient static array bound checking for large embedded c
programs. In Proceedings of the ACM SIGPLAN 2004 conference on Programming language design and
implementation. PLDI ’04. ACM, New York, NY, USA, 231–242.

WEGMAN, M. N. AND ZADECK, F. K. 1991. Constant propagation with conditional branches. ACM Trans on
Programming Languages and Systems 13, 181–210.

YANG, H., LEE, O., BERDINE, J., CALCAGNO, C., COOK, B., DISTEFANO, D., AND O’HEARN, P. 2008.
Scalable shape analysis for systems code. In Proceedings of the International Conference on Computer
Aided Verification. 385–398.

YU, H., XUE, J., HUO, W., FENG, X., AND ZHANG, Z. 2010. Level by level: making flow- and context-sensitive
pointer analysis scalable for millions of lines of code. In Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization. CGO ’10. ACM, New York, NY, USA,
218–229.

ZITSER, M., GROUP, D. E. S., AND LEEK, T. 2004. Testing static analysis tools using exploitable buffer
overflows from open source code. In In SIGSOFT 04/FSE-12: Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engineering. ACM Press, 97–106.

A. CORRECTNESS PROOF
Let F̂ be the semantic function for the baseline analysis (defined in equation (1)). Let
D and U be definitions (Definition 3.10) and uses (Definition 3.12) for F̂ , respectively.
Let F̂a be the sparse version of F̂ (defined in equation (C)), which is derived using ap-
proximated definitions (D̂) and uses (Û) that satisfy the safety conditions in Definition
3.21. In this appendix, we prove the Correctness Theorem in Section 3 (Theorem 3.23):

THEOREM A.1 (CORRECTNESS).

∀i ∈ ∆.∀l ∈ D̂(i).(lfpF̂a)(i)(l) = (lfpF̂ )(i)(l).

To prove the theorem, we need auxiliary definitions: helper data dependency, helper
abstract semantic function, and the equivalence of fixpoint solutions.

Definition A.2 (Helper Data Dependency). Helper data dependency is quadruple
relation (∼) ⊆ ∆× L̂×∆× (∆→ Ŝ) defined as follows:

i0
l∼φ̂ in iff ∃i0 . . . in ∈ Paths(φ̂), l ∈ L̂.

l ∈ D̂(i0) ∧ ∀k ∈ (0, n). l 6∈ D̂(ik)

2

Note that the notion of helper data dependency (∼) relaxes the conditions of approx-
imated data dependency ( ) (Definition 3.20): the helper data dependency does not
require that the defined location l ∈ D̂(i0) to be used at in. Thus, (∼φ̂) ⊇ ( φ̂) for all
φ̂. Using the helper data dependency, we define the helper abstract semantic function,
which is the same as F̂a but it is defined over (∼) instead of ( ).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:36 Oh et al.

Definition A.3 (Helper Abstract Semantic Function).

F̂h(φ̂) = λi ∈ ∆.f̂i(
⊔
i′
l∼φ̂i

φ̂(i′)|l).

2

It is easy to verify that helper abstract semantic function F̂h is greater than or equal
to sparse abstract semantic function F̂a.

LEMMA A.4. lfpF̂a v lfpF̂h.

PROOF. Immediate from ( φ̂) ⊆ (∼φ̂).

Next, we define the notion of equivalence of fixpoint solutions.

Definition A.5 (Equivalence of Fixpoint Solutions). We say S ∈ ∆ → Ŝ and S ′ ∈
∆→ Ŝ are equivalent, written S ≡ S ′, if and only if the following two conditions hold.

(1) ∀i ∈ ∆, l ∈ D̂(i).S(i)(l) = S ′(i)(l)
(2) (↪→S) = (↪→S′)

2

The first condition says that two solutions are equal modulo D̂. The second condition
says that S and S ′ generate the same transition relation. Then, our goal is to prove the
following theorem, which is stronger than the Correctness Theorem.

THEOREM A.6. lfpF̂ ≡ lfpF̂a.

PROOF. We prove the theorem using sub-lemmas that we will prove shortly:

lfpF̂ = lfpF̂h (Lemma A.7 and Lemma A.8)

≡ lfpF̂a (Lemma A.9)

The proof proceeds in two steps, which intuitively show that our notion of definition
set (D̂) and use set (Û) are correct, respectively. The first equality (lfpF̂ = lfpF̂h) means
that the definition set (D̂) is correct: the helper analysis (F̂h), which is only different
from F̂ in that F̂h brings each abstract value from its definition points, has indeed the
same fixpoint solution as the original analysis (F̂ ). The second equality (lfpF̂h ≡ lfpF̂a)
means that the use set (Û) is correct: the sparse analysis (F̂a), which is only different
from F̂h in that F̂a considers only the locations in Û, has the equivalent fixpoint solution
as the helper analysis (F̂h).

Now, we prove the lemmas. The first two lemmas prove that the least fixpoint of the
original abstract semantic function F̂ equals the least fixpoint of the helper abstract
semantic function F̂h.

LEMMA A.7. lfpF̂h v lfpF̂ .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:37

PROOF. Let S be lfpF̂ . To prove the lemma, it is enough to prove that S is a post-
fixpoint of F̂h, i.e., F̂h(S) v S:

∀i ∈ ∆. F̂h(S)(i) = f̂i(
⊔
i′
l∼Si

S(i′)|l) (def. of F̂h)

v f̂i(
⊔

i′′↪→Si

S(i′′)) (f̂i is mono. &
⊔
i′
l∼Si

S(i′)|l v
⊔

i′′↪→Si

S(i′′))

= F̂ (S)(i) (def. of F̂ )

= S(i). (S = lfpF̂ )

It remains to prove the following statement:

∀i ∈ ∆.
⊔
i′
l∼Si

S(i′)|l v
⊔

i′′↪→Si

S(i′′). (6)

To prove the statement, it is enough to prove that for all i′ ∈ ∆ such that i′ l∼S i,

S(i′)|l v
⊔

i′′↪→Si

S(i′′).

By the definition of (∼), i′ l∼S i implies that there exists a path i0 ↪→S . . . ↪→S in ∈
Paths(S) such that i0 = i′, in = i, l ∈ D̂(i0), and ∀k ∈ (0, n).l 6∈ D̂(ik). For the moment,
we claim that ∀k ∈ (0, n).S(ik−1)(l) v S(ik)(l). Using the claim, the proof proceeds as
follows:

S(i′)|l = S(i0)|l (i′ = i0)
v S(i1)|l (the claim)
v · · ·
v S(in−1)|l (the claim)
v S(in−1)

v
⊔

i′′↪→Sin

S(i′′) (in−1 ↪→S in)

=
⊔

i′′↪→Si

S(i′′). (in = i)

Now, we prove the claim:

∀k ∈ (0, n).S(ik−1)(l) v S(ik)(l).

The proof proceeds as follows:

S(ik)(l) = F̂ (S)(ik)(l) (S = lfpF̂ )

= f̂ik(
⊔

i′↪→Sik

S(i′))(l) (def. of F̂ )

= (
⊔

i′↪→Sik

S(i′))(l) (l /∈ D(ik) from l /∈ D̂(ik) and Lemma 3.11)

w S(ik−1)(l). (ik−1 ↪→S ik)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38 Oh et al.

LEMMA A.8. lfpF̂ v lfpF̂h.

PROOF. Let S be lfpF̂h. To prove the lemma, it is enough to prove that S is a post-
fixpoint of F̂ , i.e., F̂ (S) v S.

∀i ∈ ∆. F̂ (S)(i) = f̂i(
⊔

i′↪→Si

S(i′)) (def. of F̂ )

v f̂i(
⊔

i′′
l∼Si

S(i′′)|l) (f̂i is mono. and
⊔

i′↪→Si

S(i′) v
⊔

i′′
l∼Si

S(i′′)|l)

= F̂h(S)(i) (def. of F̂h)

= S(i). (S = lfpF̂h)

It remains to prove the following statement:

∀i ∈ ∆.
⊔

i′↪→Si

S(i′) v
⊔

i′′
l∼Si

S(i′′)|l.

To prove the statement, it is enough to prove that for all i′ ∈ ∆ such that i′ ↪→S i and
for all l ∈ L̂,

S(i′)(l) v
⊔

i′′
l∼Si

S(i′′)(l).

We consider two cases: l ∈ D̂(i′) and l 6∈ D̂(i′).

— l ∈ D̂(i′): By the definition of (∼) (Definition A.2), we have i′ l∼S i. Thus,

S(i′)(l) v
⊔

i′′
l∼Si

S(i′′)(l).

— l /∈ D̂(i′):

S(i′)(l) = F̂h(S)(i′)(l) (S = lfpF̂h)

= f̂i′(
⊔

i′′
l′∼Si′

S(i′′)|l′)(l) (def. of F̂h)

= (
⊔

i′′
l′∼Si′

S(i′′)|l′)(l) (l /∈ D(i′) from l /∈ D̂(i′) and S v lfpF̂ )

= (
⊔

i′′
l∼Si′

S(i′′)(l))

v (
⊔

i′′
l∼Si

S(i′′)(l)) (i′′ l∼S i′ ∧ i′ ↪→S i ∧ l /∈ D̂(i′) =⇒ i′′
l∼S i)

Here we deduce

f̂i′(
⊔

i′′
l′∼Si′

S(i′′)|l′)(l) = (
⊔

i′′
l′∼Si′

S(i′′)|l′)(l)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:39

from l /∈ D(i′) and S v lfpF̂ . Note that, b Lemma A.7, S = lfpF̂h v lfpF̂ holds and
we have ⊔

i′′
l′∼Si′

S(i′′)|l′ v
⊔

i′′
l′∼(lfpF̂ )i

′

(lfpF̂ )(i′′)|l′ (S v lfpF̂ )

v
⊔

i′′′↪→(lfpF̂ )i
′

(lfpF̂ )(i′′′) (by (6))

Then, Lemma 3.11 applies. In the rest of this section, we will frequently use similar
arguments.

Now, we prove that the fixpoint solutions of the helper abstract semantic function
and the sparse abstract semantic function are equivalent.

LEMMA A.9. lfpF̂h ≡ lfpF̂a.

PROOF.

lfpF̂h =F̂h(lfpF̂a) (Lemma A.10)

≡F̂a(lfpF̂a) (Lemma A.14)

=lfpF̂a

Lemma A.10 shows that the fixpoint of helper abstract semantic function F̂h can be
obtained from the fixpoint of sparse abstract semantic function F̂a by applying F̂h.

LEMMA A.10. lfpF̂h = F̂h(lfpF̂a).

PROOF.

— lfpF̂h w F̂h(lfpF̂a): By Lemma A.4, we have

lfpF̂a v lfpF̂h.

By applying the monotone function F̂h on both side, we have

F̂h(lfpF̂a) v F̂h(lfpF̂h) = lfpF̂h.

— lfpF̂h v F̂h(lfpF̂a): It is enough to prove that F̂h(lfpF̂a) is a post-fixpoint of F̂h, i.e.,

F̂ 2
h (lfpF̂a) v F̂h(lfpF̂a).

lfpF̂a = lfpF̂a

=⇒ F̂h(lfpF̂a) ≡ F̂a(lfpF̂a) (Lemma A.11, Lemma A.4, and Lemma A.7)

=⇒ F̂h(lfpF̂a) ≡ lfpF̂a

=⇒ F̂ 2
h (lfpF̂a) = F̂h(lfpF̂a). (Lemma A.13)

Lemma A.11 shows that the output of the helper abstract semantic function F̂h and
sparse abstract semantic function F̂a is equivalent if arguments are equivalent.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:40 Oh et al.

LEMMA A.11. If φ̂ ≡ φ̂′ and φ̂, φ̂′ v lfpF̂ then F̂h(φ̂) ≡ F̂a(φ̂′).

PROOF. We prove the two conditions in Definition A.5.

(1) ∀i ∈ ∆, l ∈ D̂(i). F̂h(φ̂)(i)(l) = F̂a(φ̂′)(i)(l):

Now we prove that F̂h(φ̂)(i)(l) = F̂a(φ̂′)(i)(l):

F̂h(φ̂)(i)(l) = f̂i(
⊔
i′
l′∼φ̂i

φ̂(i′)|l′)(l) (def. of F̂h)

= f̂i((
⊔
i′
l′∼φ̂i

φ̂(i′)|l′)|Û(i))(l) (Def. 3.21, Lemma A.12, l ∈ D̂(i), and Def. 3.15)

= f̂i(
⊔

i′
l′
 φ̂′ i

φ̂′(i′)|l′)(l) (def. of )

= F̂a(φ̂′)(i)(l). (def. of F̂a)

The second equality needs more explanation. Note that Definition 3.21 ensures
that dD(i)(i) ∪ dD̂(i)\D(i)(i) ⊆ Û(i). By Lemma A.12, dD(i)(i) ∪ dD̂(i)\D(i)(i) = dD̂(i)(i)

and hence dD̂(i)(i) ⊆ Û(i) holds. Then, by Definition 3.15,

f̂i(
⊔
i′
l′∼φ̂i

φ̂(i′)|l′)|D̂(i) = f̂i((
⊔
i′
l′∼φ̂i

φ̂(i′)|l′)|Û(i))|D̂(i)

holds, from which the desired equality is derived since l ∈ D̂(i).
(2) (↪→F̂h(φ̂)) = (↪→F̂a(φ̂′)):

It is enough to prove that

∀i ∈ ∆.{i′ ∈ ∆ | i ↪→F̂h(φ̂) i
′} = {i′ ∈ ∆ | i ↪→F̂a(φ̂′) i

′}.

By Definition 3.6.(3) and 3.16, it is enough to prove that

∀i ∈ ∆, l ∈ Û(i). F̂h(φ̂)(i)(l) = F̂a(φ̂′)(i)(l).

We consider two cases:
— l ∈ D̂(i): We already showed that F̂h(φ̂)(i)(l) = F̂a(φ̂′)(i)(l) holds in this case.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:41

— l /∈ D̂(i):

F̂h(φ̂)(i)(l) = f̂i(
⊔
i′
l′∼φ̂i

φ̂(i′)|l′)(l) (def. of F̂h)

= (
⊔
i′
l′∼φ̂i

φ̂(i′)|l′)(l) (l /∈ D(i) from l /∈ D̂(i) and φ̂ v lfpF̂ )

= (
⊔
i′
l∼φ̂i

φ̂(i′)(l))

= (
⊔

i′
l∼φ̂′ i

φ̂′(i′)(l)) (φ̂ ≡ φ̂′)

= (
⊔

i′
l
 φ̂′ i

φ̂′(i′)(l)) (l ∈ Û(i) and def. of )

= (
⊔

i′
l′
 φ̂′ i

φ̂′(i′)|l′)(l)

= f̂i(
⊔

i′
l′
 φ̂′ i

φ̂′(i′)|l′)(l) (l /∈ D(i) from l /∈ D̂(i) and φ̂′ v lfpF̂ )

= F̂a(φ̂′)(i)(l). (def. of F̂a)

The following lemma states that the use template is distributive over ∪:

LEMMA A.12. For all A,B ⊆ L, i ∈ ∆,

dA∪B(i) = dA(i) ∪ dB(i).

PROOF. (⊆) Suppose l ∈ dA∪B(i). By definition, there exists ŝ v
⊔
i′↪→(lfpF̂ )i

(lfpF̂ )(i′)

such that

f̂i(ŝ)|A∪B 6= f̂i(ŝ\l)|A∪B .
Therefore there exists l′ ∈ A ∪B such that

f̂i(ŝ)(l
′) 6= f̂i(ŝ\l)(l′).

If l′ ∈ A then it is an evidence that l ∈ dA(i); otherwise, l ∈ dB(i).
(⊇) Suppose l ∈ dA(i). By definition, there exists ŝ v

⊔
i′↪→(lfpF̂ )i

(lfpF̂ )(i′) such that

f̂i(ŝ)|A 6= f̂i(ŝ\l)|A.

It is an evidence that l ∈ dA∪B . Similarly for B.

Lemma A.13 shows that the result of applying the helper abstract semantic function
F̂h is invariant up to equivalence.

LEMMA A.13. If φ̂ ≡ φ̂′ then F̂h(φ̂) = F̂h(φ̂′).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:42 Oh et al.

PROOF. For all i ∈ ∆ and l ∈ L,

F̂h(φ̂)(i) = f̂i(
⊔
i′
l∼φ̂i

φ̂(i′)|l) (def. of F̂h)

= f̂i(
⊔

i′
l∼φ̂′ i

φ̂′(i′)|l) (φ̂ ≡ φ̂′)

= F̂h(φ̂′)(i). (def. of F̂h)

LEMMA A.14. F̂h(lfpF̂a) ≡ F̂a(lfpF̂a).

PROOF. By Lemma A.11. Note that lfpF̂a ≡ lfpF̂a and lfpF̂a v lfpF̂h v lfpF̂ by
Lemma A.4 and Lemma A.7.

B. RECONSTRUCTING THE ORIGINAL ANALYSIS RESULTS
Sparse analysis result lfpF̂a stores only the abstract values that are defined at each
partitioning index and, in the Correctness Theorem, we compared only the defined ab-
stract values between two fixpoints lfpF̂ and lfpF̂a. However, using the helper data
dependency (Definition A.2), it is easy to check the complete equivalence between the
entire original analysis result and the sparse analysis result using the following re-
construction procedure:

LEMMA B.1 (RECONSTRUCTION). For all i ∈ ∆ and l ∈ L̂,

(lfpF̂ )(i)(l) =

{
(lfpF̂a)(i)(l) l ∈ D̂(i)⊔
i′
l∼(lfpF̂a)i

(lfpF̂a)(i′)(l) l /∈ D̂(i)

PROOF.

— l ∈ D̂(i): By the Correctness Theorem (Theorem A.1), we have

(lfpF̂ )(i)(l) = (lfpF̂a)(i)(l).

— l /∈ D̂(i):

(lfpF̂ )(i)(l) = (lfpF̂h)(i)(l) (Lemma A.7 and Lemma A.8)

= (F̂h(lfpF̂a))(i)(l) (Lemma A.10)

= f̂i(
⊔

i′
l′∼(lfpF̂a)i

(lfpF̂a)(i′)|l′)(l) (def. of F̂h)

= (
⊔

i′
l′∼(lfpF̂a)i

(lfpF̂a)(i′)|l′)(l) (l 6∈ D(i) from l /∈ D̂(i) and lfpF̂a v lfpF̂ )

=
⊔

i′
l∼(lfpF̂a)i

(lfpF̂a)(i′)(l).

In practice, when conducting verification, we do not need to entirely perform the re-
construction procedure. Suppose we would like to check an assertion at a program

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



Global Sparse Analysis Framework A:43

point and the assertion involves a variable whose value is missing in the sparse anal-
ysis result. In this case, it is enough to perform the reconstruction procedure only for
the variable and program point, instead of reconstructing the entire original analysis
result.

C. A FIXPOINT COMPUTATION STRATEGY
Suppose we compute a fixpoint of the sparse abstract semantic function:

F̂a(φ̂) = λi ∈ ∆.f̂i(
⊔
i′
l
 φ̂i

φ̂(i′)|l).

We need an efficient algorithm for computing the fixpoint. A naive fixpoint compu-
tation strategy, which re-builds data dependency  φ̂ whenever the analysis result φ̂
changes, may be inefficient. In practice, we need a smart algorithm that avoids the
re-computation of the data dependency. For instance, we can develop an incremen-
tal algorithm that newly builds data dependencies only for part of φ̂ that has been
changed. Incremental computation of def-use chains has been studied in the litera-
ture, e.g., [Choi et al. 1996].

In this appendix, we present a fixpoint computation strategy that reduces re-
computation of data dependencies. Our approach is orthogonal to the incremental
approach and we can combine both approaches in practice. Our algorithm does not
update data dependency every time φ̂ changes during the fixpoint computation.

The idea is that we put off updating the data dependency until the analysis’ interme-
diate results become stable. We slightly modify F̂a and define the following function:

F̂l(φ̂, φ̂
′) = λi ∈ ∆.f̂i(

⊔
i′
l
 φ̂i

φ̂′(i′)|l).

Note that F̂l uses different arguments in computing analysis results and data depen-
dency: the data dependency  is computed with φ̂ and the analysis results are com-
puted with φ̂′. Our goal is to compute the fixpoint of F̂m defined as follows:

F̂m(φ̂) = lfpλφ̂′. F̂l(φ̂, φ̂ t φ̂′)

= lfpλφ̂′.λi. f̂i(
⊔
i′
l
 φ̂i

(φ̂ t φ̂′)(i′)|l).

Computing lfpF̂m = lfpλφ̂.lfpλφ̂′.F̂l(φ̂, φ̂tφ̂′) consists of nested fixpoint iterations. Dur-
ing the inner fixpoint computation, lfpλφ̂′.F̂l(φ̂, φ̂ t φ̂′), the data dependency φ̂ is not
re-computed as φ̂ is constant in the inner fixpoint iteration. The data dependency is
re-computed only in the outer fixpoint iteration. Thus, if the transition relation (↪→) is
mostly static and only few flows are discovered during the analysis, the data depen-
dency would be re-computed only few times. Lemma C.1 shows that lfpF̂m equals to
lfpF̂a. We first observe two obvious facts on F̂l:

(1) F̂m and F̂l are monotone on their arguments.
(2) F̂a(φ̂) = F̂l(φ̂, φ̂).

LEMMA C.1. lfpF̂m = lfpF̂a.

PROOF. We prove both lfpF̂m v lfpF̂a and lfpF̂a v lfpF̂m.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:44 Oh et al.

— lfpF̂m v lfpF̂a:
It is enough to prove that F̂m(lfpF̂a) v lfpF̂a.

F̂m(lfpF̂a) = lfpλφ̂′.F̂l(lfpF̂a, lfpF̂a t φ̂′) (def. of F̂m)

v lfp F̂a. (F̂l(lfpF̂a, lfp F̂a t lfp F̂a) = lfpF̂a)

— lfpF̂a v lfpF̂m:
It is enough to prove that F̂a(lfpF̂m) v lfpF̂m.

lfpF̂m = F̂m(lfpF̂m)

= lfpλφ̂′.F̂l(lfpF̂m, lfpF̂m t φ̂′).
Hence,

lfpF̂m = F̂l(lfpF̂m, lfpF̂m t lfpF̂m)

= F̂a(lfpF̂m).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.


