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SUMMARY

In this paper, we present a useful technique for implementing practical static program analyzers that use
widening. Our technique aims to improve the efficiency of the conventional widening-with-thresholds tech-
nique at a small precision compromise. In static analysis, widening is used to accelerate (or converge) fixed
point iterations. Unfortunately, this acceleration often comes with a significant loss in analysis precision. A
standard method to improve the precision is to apply the widening with a set of thresholds. However, this
technique may significantly slow down the analysis, because in practice it is commonplace to use a large set
of thresholds. In worst case, the technique increases the analysis cost by the size N of the threshold set. In
this paper, we propose a technique to reduce the worst case by logN , by employing a binary search in the
process of applying threshold values. We formalize the technique in the abstract interpretation framework
and show that, by experiments with a realistic static analyzer for C, our technique considerably improves the
efficiency (by 81.5%) of the existing method with a small compromise (20.9%) on the analysis precision.
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1. OVERVIEW

In this paper, we present a technique that can be used for implementing practical static analyzers that
use widening. Our technique provides a way of achieving a better precision/cost balance than the
conventional widening-with-thresholds technique. Our technique is best illustrated with an example.
Consider the following example code:

int a[10];
int i = 0;
while (1) {
i++;
a[i] = 0; // safe
if (i >= 8) break;

}

Suppose that we analyze the program using the interval abstract domain [1] (our technique is not
limited to the interval domain; it is generally applicable regardless of abstract domains). The aim
of the analysis is to prove the safety of the buffer access (a[i]) at line 5; that is, we would like to
show that no buffer-overrun errors occur at that program point.
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Widening without thresholds. If we analyze the program using the standard widening operator,‡

we cannot prove the safety. With this widening operator, the loop is analyzed as follows:

Iterations
Lines 1 2 3

3 Œ0; 0� Œ0;C1� Œ0;C1�

4, 5 Œ1; 1� Œ1;C1� Œ1;C1�

6 Œ1; 1� Œ1; 7� Œ1; 7�

At the first iteration of the loop, variable i has interval Œ0; 0� at the entry of the loop (line 3). At
lines 4 and 5, it increments to Œ1; 1�. At the second iteration of the loop, the value of i at line 3
becomes Œ0;C1�, because the value Œ1; 1� from line 6 is combined with the initial value Œ0; 0� with
the widening operator: Œ0; 0�rŒ1; 1� D Œ0;C1�. Thus, i has Œ1;C1� and Œ1; 7� at lines 4 (and 5)
and 6, respectively. At the third iteration, we combine the values Œ0; 0� and Œ1; 7� with the widening:
Œ0; 0�rŒ1; 7� D Œ0;C1�, reaching a fixed point. Thus, the analysis concludes that i has interval
Œ1;C1� at line 5 and fails to prove the buffer-overrun safety.

(Note: In this simplified example program, the precision loss can be recovered by applying nar-
rowing after widening. However, in reality, things become much complicated: for instance, each of
the statements in the aforementioned program may appear in distant program points (across proce-
dures), and the loop can be made by calling a procedure multiple times. In such a case, narrowing
hardly recovers the precision loss caused by widening, and using thresholds in the widening phase
is essential for analysis precision [2, 3].)

Widening with thresholds. On the other hand, if we analyze the program with the widening-with-
thresholds technique [2, 3], we can prove the safety. This method improves the analysis precision
by bounding the extrapolation performed by the widening operator. In this approach, we are given
a set T � N of thresholds, and these thresholds are successively used as a candidate of a fixed
point. The benefits of the technique crucially depend on the choice of T , but choosing a good T is
orthogonal to our technique, and in this overview, we assume that T D ¹1; 2; : : : ; 12º is given. With
this threshold set, the analysis proceeds as follows:

Iterations
Lines 1 2 3 4 5 6 7 8 9

3 Œ0; 0� Œ0; 1� Œ0; 2� Œ0; 3� Œ0; 4� Œ0; 5� Œ0; 6� Œ0; 7� Œ0; 7�

4, 5 Œ1; 1� Œ1; 2� Œ1; 3� Œ1; 4� Œ1; 5� Œ1; 6� Œ1; 7� Œ1; 8� Œ1; 8�

6 Œ1; 1� Œ1; 2� Œ1; 3� Œ1; 4� Œ1; 5� Œ1; 6� Œ1; 7� Œ1; 7� Œ1; 7�

At the second iteration, the widening Œ0; 0�rŒ1; 1� is bounded by the best possible upper bound in
the threshold set (i.e., 1), giving the result Œ0; 1� at line 3. At the third iteration, we apply widening
Œ0; 0�rŒ1; 2� with threshold 2, obtaining Œ0; 2�. In this way, the analysis progressively uses threshold
values 1; 2; 3; : : : ; 7 until the analysis reaches a fixed point. At line 3, interval Œ0; 7� is a fixed point,
and the analysis terminates at the ninth iteration. With this result, we can prove the safety at line 5,
because the value of i is Œ1; 8�, which is less than the size of array a.

Problem. However, this technique requires significantly longer iterations to converge than the
original widening approach does. The main problem is that the technique searches for the effective
threshold value in a linear fashion. For instance, in our example program, the bound 7, which

‡The widening operator for intervals is defined as follows:

Œa; b� r ? D Œa; b�
? r Œc; d� D Œc; d�
Œa; b� r Œc; d� D Œ.c < a‹�1 W a/; .b < d‹C1 W b/�
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WIDENING WITH THRESHOLDS VIA BINARY SEARCH 1319

actually improves the precision, is found only after considering all of the smaller values 1; 2; : : : ; 6
in T . The ideal solution to this problem is to use a smaller threshold set. For instance, if we use
T D ¹7º for our example program, the analysis reaches the fixed point (Œ0; 7� at line 3) with just
one extra iteration. However, choosing such a minimal yet effective threshold set in practice is very
challenging, and sometimes it is inevitable to use a large threshold set. For instance, we found that
a common heuristic that collects all constant integers involved in conditional expressions in the
program [2] leads to fairly large threshold sets in our case (Section 4).

Our approach. Our aim is to improve the efficiency of the widening-with-thresholds technique
itself, no matter what threshold sets are used. Thus, with our technique, widening with thresh-
olds can be efficiently applied even when the threshold set is inevitably large. The key idea is to
replace the linear search involved in the existing technique by a binary search, in order to reduce
ineffective trials of threshold values. Consider the example program with the same threshold set
T D ¹1; 2; : : : ; 12º. With our technique, the analysis proceeds as follows:

Iterations
Lines 1 2 3 4 5

3 Œ0; 0� Œ0; 6� Œ0; 9� Œ0; 7� Œ0; 7�

4, 5 Œ1; 1� Œ1; 7� Œ1; 10� Œ1; 8� Œ1; 8�

6 Œ1; 1� Œ1; 7� Œ1; 7� Œ1; 7� Œ1; 7�

At the second iteration, we apply widening Œ0; 0�rŒ1; 1� with threshold 6, not with the best pos-
sible upper bound 2. That is, we use the threshold value at the middle position of T , that is,
6 D .1 C 12/=2. At the third iteration, we first check if the analysis has reached a fixed point.
Because the result is not yet a fixed point, that is, Œ0; 7� 6v Œ0; 6�, we apply widening Œ0; 0�rŒ1; 7�,
now with the threshold 9, which is determined by applying the binary search with the range from
6 to 12, that is, 9 D .6 C 12/=2. At the fourth iteration, we find that the result is a fixed point,
that is, Œ0; 8� v Œ0; 9�. In this case, we roll back the analysis result to that of the second iteration
(Œ0; 6�) and restart the binary search with a reduced range (6 to 9); we use 7 as the threshold, that is,
7 D .6 C 9/=2. At the fifth iteration, the analysis terminates because it has reached a fixed point
and there is no more range to perform the binary search. (We tried both thresholds 6 and 7, where
the analysis result is a fixed point with 7 but not with 6.) Note that, for this example program, the
analysis has the same precision as the ordinary technique but requires fewer iterations to converge.

Tradeoffs between precision and cost in practice. In some cases, our binary-search-based
approach produces less precise results than the conventional linear-search-based approach. The
following program shows a typical case where our technique misses opportunities for precision
improvement:

int a[10];
int i = 0;
while (1) {
i++;
a[i] = 0; // safe
if (i == 8) break;

}

The difference from the previous example is that we use == at line 6 rather than >=. The
conventional technique with T D ¹1; 2; : : : ; 12º produces the same result as before:
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Iterations
Lines 1 2 3 4 5 6 7 8 9

3 Œ0; 0� Œ0; 1� Œ0; 2� Œ0; 3� Œ0; 4� Œ0; 5� Œ0; 6� Œ0; 7� Œ0; 7�

4, 5 Œ1; 1� Œ1; 2� Œ1; 3� Œ1; 4� Œ1; 5� Œ1; 6� Œ1; 7� Œ1; 8� Œ1; 8�

6 Œ1; 1� Œ1; 2� Œ1; 3� Œ1; 4� Œ1; 5� Œ1; 6� Œ1; 7� Œ1; 7� Œ1; 7�

but our technique gives this result:

Iterations
Lines 1 2 3 4 5 6 7

3 Œ0; 0� Œ0; 6� Œ0; 9� Œ0; 11� Œ0; 12� Œ0;C1� Œ0;C1�

4, 5 Œ1; 1� Œ1; 7� Œ1; 10� Œ1; 12� Œ1; 13� Œ1;C1� Œ1;C1�

6 Œ1; 1� Œ1; 7� Œ1; 10� Œ1; 12� Œ1; 13� Œ1;C1� Œ1;C1�

That is, because the condition i == 8 has no effect on interval Œ1; 10� at the third iteration, our
technique misses to prescribe 7 as a threshold. On the other hand, the conventional method tries all
the values in T and does not miss the chance.

Experimental results. In practice, our technique is shown to have a good precision/cost balance
compared with the conventional method. We have implemented the existing and our widening-with-
threshold techniques in a realistic C static analyzer, Sparrow [4], and compared their performance in
terms of analysis precision and time. The results show that, for five real C programs, our technique
achieved on average 79.1% of the conventional technique’s precision (i.e., 20.9% loss in precision)
with only 18.5% of cost overhead (i.e., 81.5% improvement in efficiency).

Contributions. To summarize, we make the following contributions:

� We present a new technique for performing widening with thresholds via binary search.
� We formalize the technique in a general setting and prove its correctness and termination.
� We show the effectiveness of the technique by experiments with a realistic static analyzer.

2. PRELIMINARIES

In this section, we review static analysis with widening and the standard technique of widening
with thresholds.

2.1. Static analysis with widening

We consider a static analysis designed by abstract interpretation [5, 6]. In abstract interpretation, a
static analysis is specified with an abstract domain D and abstract semantic function:

F W D ! D

where D is a complete partial order and F is a monotone function, that is, d1 v d2 H) F.d1/ v
F.d2/. Then, the job of the analysis is to compute, in finite steps, an upper bound A 2 D ofG

i>0
F i .?/ D F 0.?/ v F 1.?/ v F 2.?/ v : : : (1)

However, when the height of abstract domain D is infinite or large, the fixed point computation (1)
may not terminate or takes too much time to complete. In this case, we can compute an upper bound,
that is, A w

F
i>0 F

i .?/, with a widening operator to guarantee or accelerate the termination [5].
A widening operator

r W D ! D ! D

is a binary operator that has the following two properties:
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� It is an upper bound operator, that is,

8a; b 2 D W .a v arb/ ^ .b v arb/: (2)

� For all increasing chains x0 v x1 v x2 v : : : in D, the chain .yi /i defined as

y0 D x0

yiC1 D yirxiC1
(3)

is finite (eventually stabilizes after finite steps).

With a widening operator r W D �D ! D, we compute an increasing chain .Xi /i as follows:

X0 D ?

XiC1 D Xi F.Xi / v Xi

D XirF.Xi / otherwise.

(4)

Then the abstract interpretation framework ensures that the chain .Xi /i is finite and its limit (X such
that F.X/ v X ) is an upper bound of

F
i>0 F

i .?/.

Example 1
Throughout the paper, we use a simple running example. Consider an abstract domain D D N [
¹1º, where N D ¹1; 2; 3; : : :º is the set of natural numbers (we put the bar on top of the domain
elements to distinguish them from numbers used in subscripts). Note that the domain D is a complete
partial order, where the order between elements is defined as follows:

i v j iff

²
i 6 j i; j 2 N
j D1 otherwise.

Consider the following semantic function F 2 D ! D:

F.n/ D if n < 9 then nC 1 else n:

Intuitively, F models a conditional statement if (n < 9) n++;. Note that, in this case,
computing the sequence in (1) involves nine iterations:

F.1/ D 2

F.2/ D 3

:::

F .8/ D 9

F.9/ D 9

A widening operator is used to accelerate the iteration. Suppose that we use a widening operator
r W D �D ! D, defined as follows:

xry D

²
x if x w y
1 otherwise.

(5)

Then, the chain (4) proceeds as follows:

X0 D 1

X1 D 1rF.1/ D 1r2 D1

X2 D X1 D1 .since F.X1/ v X1/:

Thus, with the widening operator, the fixed-point computation terminates in three steps, but the
result, limi2N Xi D 1, is less precise than the least fixed point, 9. The goal of widening with
threshold is to prevent this precision loss. �
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2.2. Widening with thresholds

The idea of widening with thresholds is to bound the extrapolation of the standard widening
iteration.

Suppose that a set T � D of thresholds is given, where the elements in T are totally ordered.
When T has n elements, we write tk.1 6 k 6 n/ for the kth smallest element in T . That is,

T D ¹t1; t2; : : : ; tnº

where ti 2 D and t1 v t2 v � � � v tn. Without loss of generality, we assume that n > 2; t1 is the
bottom element in D, that is, t1 D ?, and tn is the top element, that is, tn D >.

We define two auxiliary functions regarding the thresholds set:

lub.X/ D min¹k j 1 6 k 6 jT j ^X v tkº

glb.X/ D max¹k j 1 6 k 6 jT j ^ tk v Xº:

For a given X 2 D; lub.X/ denotes the smallest index k of threshold values greater than or equal
to X . That is, Tlub.X/ is the best possible (i.e., least) upper bound of X in the threshold set. On the
other hand, Tglb.X/ means the largest threshold that is less than or equal to X , that is, Tglb.X/ is the
best possible (i.e., greatest) lower bound of X in the threshold set.

Example 2
In our running example (Example 1), suppose that we use the threshold set T D ¹1; 2; : : : ; 9;1º.
In this case, t1 D 1; t2 D 2; : : : ; t9 D 9, and t10 D1. Then, for instance,

lub.2/ D min¹k j 1 6 k 6 jT j ^ 2 v tkº D min¹2; 3; : : : ; 9; 10º D 2

glb.6/ D max¹k j 1 6 k 6 jT j ^ tk v 6º D min¹1; 2; : : : ; 6º D 6:

�

The widening operator rT W D �D ! D with threshold set T is defined as follows:

XrT Y D .XrY / u tlub.XtY /: (6)

That is, given X and Y , we first apply the ordinary widening operator, that is,XrY , and then prune
the result with the best possible threshold that over-approximates bothX and Y , that is, lub.X tY /.
This widening operator is used in the widening sequence (4) in the usual way.

Example 3
In the running example with T D ¹1; 2; : : : ; 9;1º, the increasing chain (4) with the widening
operator rT proceeds as follows:

X0 D 1

X1 D 1r
TF.1/ D 1rT 2 D .1r2/ u tlub.2/ D .1r2/ u t2 D1u 2 D 2

:::

X8 D 8r
TF.8/ D 8rT 9 D .8r9/ u tlub.9/ D .8r9/ u t9 D1u 9 D 9

X9 D X8 D 9:

Thus, limi2N Xi D 9. Note that the fixed point iteration with the threshold set prevents the precision
loss of the simple widening operator in (5). However, the sequence of widening with thresholds
takes longer iterations to converge than the simple widening method. Our goal is to accelerate the
widening iteration with thresholds without compromising the analysis precision too much. �
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3. OUR TECHNIQUE

In this section, we formalize our technique.

3.1. Widening with thresholds via binary search

Our technique differs from the standard widening-with-thresholds technique in two ways.

Widening operator. First, we use a different widening operator. Our widening operator rTs W
D �D ! D is not only parameterized with thresholds set T but also with an index s .1 6 s 6 jT j/
and is defined as follows:

XrTs Y D .XrY / u t
j

lub.XtY /Cs
2

k: (7)

Note that, given X and Y , our widening operator uses the threshold tj lub.XtY /Cs
2

k, that is, the thresh-

old value at the middle position of lub.X t Y / and s, whereas the standard method uses the best
possible one, that is, tlub.XtY /.

Example 4
Consider the running example with T D ¹1; 2; : : : ; 9;1º. Then, for example,

1rT102 D .1r2/ u t
j

lub.1t2/C10
2

k D .1r2/ u tb 2C102 c D 1u t6 D1u 6 D 6;

while the standard widening with thresholds results in 1rT 2 D 2. �

We assume that the widening operation XrTs Y is always performed under the condition
s > lub.X t Y /. With this condition, it is easy to show that rTs is a valid widening operator that
satisfies conditions (2) and (3).

Fixed-point computation. The other difference is that we use our own fixed-point computation
strategy. Instead of computing the chain (4), we compute sequence Y0; Y1; Y2; : : : (until YiC1 D Yi )
defined as follows. Each Yi D .Xi ; li ; ri / is a triple of an abstract state Xi 2 D and indices li and
ri that denote the current status of binary search. The initial configuration Y0 has the bottom state
with the first and last indices of the thresholds set T :

Y0 D .?; 1; jT j/:

Throughout the computation, our method assumes that li is the largest unstable threshold index and
ri is the smallest stable threshold index among the ones considered so far. For instance, t0 satisfies
this invariant because F is unstable at t1.D ?/, that is, F.?/ 6v ?, and F is stable at tjT j D >, that
is, F.>/ v >.

Given the i th configuration Yi D .Xi ; li ; ri /, YiC1 is defined as follows:

YiC1 D

8̂̂
<̂
ˆ̂̂:

.tri ; ri � 1; ri / if F.Xi / 6v Xi ^ lub.Xi t F.Xi // > ri

.Xir
T
ri
F.Xi /; glb.Xi /; ri / if F.Xi / 6v Xi ^ lub.Xi t F.Xi // < ri

.tli ; li ; lub.Xi // if F.Xi / v Xi ^ li C 1 < ri

.Xi ; li ; ri / if F.Xi / v Xi ^ li C 1 D ri :

(8)

Suppose that Xi is not yet a fixed point of F (i.e., F.Xi / 6v Xi ). We consider two cases: (1) when
the binary search is finished (i.e., lub.Xi t F.Xi // > ri , here if F is monotone lub.Xi t F.Xi //
should not exceed ri ), we terminate the sequence and return the smallest stable result tri searched
so far and set liC1 D ri � 1 and riC1 D ri (which indicates the completion of the search) and (2)
otherwise, we apply the widening operator with index ri :

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1317–1328
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Xir
T
ri
F.Xi / D .XirF.Xi // u tj lub.XitF.Xi //Cri

2

k

and set liC1 to glb.Xi / and riC1 to ri because now the largest unstable threshold index is glb.Xi /
and the smallest stable index is unchanged.

Next, suppose that Xi is a fixed point of F (i.e., F.Xi / v Xi ). We consider two cases. The first
case is when we have not yet finished the search (i.e., liC1 < ri ). In this case, we roll back the most
recently unstable state and continue to search for more precise fixed points. Because we do not keep
track of the previously unstable point, we instead go back to tli , the largest unstable threshold. And,
because Xi is a fixed point, we set riC1 to lub.Xi /, which is also a fixed point of F . The second
case is when we have finished the search (i.e., li C 1 D ri ). In this case, YiC1 is defined as Yi and
we terminate the computation. In summary, we compute the sequence

.X0; l0; r0/; .X1; l1; r1/; .X2; l2; r2/; : : : ; .Xi ; li ; ri /; : : :

until F.Xi / v Xi and li C 1 D ri .

Example 5
Consider Example 1, and let T D ¹1; 2; 3; : : : ; 9;1º. Our fixed-point computation strategy (8)
proceeds as follows:

Y0 D .1; 1; 10/

Y1 D .1r
T
102; glb.1/; 10/ D

�
1u tj lub.2/C10

2

k; 1; 10
�
D .6; 1; 10/

Y2 D .6r
T
107; glb.6/; 10/ D

�
1u tj lub.7/C10

2

k; 6; 10
�
D .8; 6; 10/

Y3 D .8r
T
109; glb.8/; 10/ D

�
1u tj lub.9/C10

2

k; 8; 10
�
D .9; 8; 10/

Y4 D .t8; 8; lub.9// D .8; 8; 9/

Y5 D
�
8rT109; glb.8/; 9

�
D

�
1u tj lub.9/C10

2

k; 8; 9
�
D .9; 8; 9/

Y6 D Y5 D .9; 8; 9/:

Note that this result is the same as the result with standard widening with threshold (Example 3)
but needs fewer iterations to terminate. �

Correctness and termination. It is easy to show that the result of our method is safe: if the
sequence (8) terminates, the final result X is guaranteed to be an upper bound of

F
i>N F

i .?/,
because the result X is a fixed point of F (i.e., F.X/ v X ). However, termination of (8) is not
obvious, which we prove in the following lemma.

Theorem 1 (Termination)
Let D be an abstract domain and F W D ! D be a monotone function on D. Let T D ¹t1; t2; : : : ; tnº
be the set of thresholds and Y0 D .?; 1; jT j/. Define Yi D .Xi ; li ; ri / according to (8). Then, there
always exists N such that .XNC1; lNC1; rNC1/ D .XN ; lN ; rN /.

Proof
Consider Yi D .Xi ; li ; ri /. We consider the four cases in (8). For the first and last cases, it is easy
to show that the sequence immediately terminates. For the second and third cases, we show that the
search bound .li ; ri / will be eventually narrowed down, subsequently leading to the immediate (the
first and last) cases.

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2016; 46:1317–1328
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� When F.Xi / v Xi and li C 1 < ri : In this case,

YiC1 D .tli ; li ; lub.Xi //:

Consider the four possible cases for Yi :

1. Yi D .Xi�1r
T
ri�1

F.Xi�1/; glb.Xi�1/; ri�1/ with F.Xi�1/ 6v Xi�1 and lub.Xi�1 t
F.Xi�1// < ri�1. In this case, we show that ri D ri�1 > riC1:

riC1 D lub.Xi / def. of riC1

D lub.Xi�1r
T
ri�1

F.Xi�1// def. of Xi

D lub

�
Xi�1rF.Xi�1/ u tj lub.Xi�1tF.Xi�1//Cri�1

2

k
�

def. of rTri�1

6 lub

�
tj lub.Xi�1tF.Xi�1//Cri�1

2

k
�

< lub.tri�1/ condition on Yi
D ri�1 D ri def. of lub

2. Yi D .tli�1 ; li�1; lub.Xi�1// with F.Xi�1/ v Xi�1 and li�1 C 1 < ri�1. We show that
riC1 < ri�1:

riC1 D lub.Xi / def. of riC1
D lub.tli�1/ def. of Xi
D li�1 def. of lub

< ri�1 condition on Yi

3. When Yi D .tri�1 ; ri�1� 1; ri�1/ and F.Xi�1/ 6v Xi�1^ lub.Xi�1 tF.Xi�1// > ri�1:
This case cannot occur because we assume that li C 1 < ri .

4. When Yi D .Xi�1; li�1; ri�1/ and F.Xi�1/ v Xi�1^ li�1C1 D ri�1: This case cannot
occur we assume that li C 1 < ri .

� When F.Xi / 6v Xi and lub.Xi t F.Xi // < ri : In this case,

YiC1 D .Xir
T
ri
F.Xi /; glb.Xi /; ri /:

We consider the four possible cases for YiC1, as we did in the previous case:

1. For instance, consider the case that F.XiC1/ 6v XiC1 and lub.XiC1tF.XiC1// < riC1:
In this case, we show that liC1 < liC2:

liC2 D glb.XiC1/ def. of liC2

D glb
�
Xir

T
ri
F.Xi /

�
def. of XiC1

D

�
lub.Xi t F.Xi //C ri

2

�
def. of Xir

T
ri
F.Xi /

> glb.Xi / F.Xi / 6v Xi ; def. of lub; glb

D liC1 def. of liC1

2. Other three cases are proved similarly.

�

Discussion. Our widening-with-thresholds technique via binary search can be formulated as a spe-
cialization of an abstract domain and widening operator. Given an abstract domain D, suppose we
define a new domain D0 D D�N �N, where domain elements .d; l; r/ 2 D0 is ordered as follows:

.d1; l1; r1/ v .d2; l2; r2/ iff .l1 6 l2 ^ r1 > r2/ _ .l1 D l2 ^ r1 D r2 ^ d1 v d2/:
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Table I. Experimental results.

Without Standard Ours Comparison

Programs LOC (K) alms sec jT j alms sec alms sec precision (%) cost (%)

archimedes 7 1273 15 113 1105 18 1113 16 95.2 33.3
bc-10.6 13 555 144 120 547 277 551 154 50.0 7.5
tar-1.13 20 954 78 131 941 237 944 105 76.9 17.0
make-3.76 27 1847 224 122 1819 656 1825 309 78.6 19.7
a2ps-6.14 64 2029 2073 241 1768 2489 1847 2161 69.7 21.2

TOTAL 131 6658 2534 6180 3677 6280 2745 79.1 18.5

Without, widening without thresholds; Standard, the standard widening-with-thresholds technique (with linear
search); Ours, widening with threshold based on binary search. The ‘Comparison’ show the comparison against
the standard technique of widening with thresholds. precision, the relative precision of our technique compared
with the standard method; cost, the relative cost (analysis time) of our technique compared with the stan-
dard method; jT j, the size of the threshold set used in experiments; alms, the number of alarms reported by
each analyzer.

The definition of the join operator for D0 immediately follows from the ordering definition. Now,
the fixed-point computation in (8) defines a particular widening operator r 0 W D0 � D0 ! D0 for
the new domain, which performs a binary search. In this formulation, Theorem 1 corresponds to
proving that r 0 satisfies the conditions of widening (i.e., termination of widening).

4. EXPERIMENTS

We have implemented our technique in Sparrow [4], a buffer-overrun analysis tool for C programs.
Sparrow basically performs a flow-sensitive and context-insensitive analysis using the interval
abstract domain. From the baseline analyzer, we have made two analyzers that apply widening with
thresholds based on the standard linear search and our binary search, respectively. For those analy-
ses, we used the same threshold set T that contains all the constant integers that appear in conditional
statements of the given program. Note that this simple method generates a quite large threshold
set in practice (column jT j). To implement our technique, we applied the technique in Section 3
separately for variables and program points. That is, we maintain the status information (left/right
indices) of binary search for each variable and program point in the program.

Table I shows that our technique has a better cost/precision balance than the standard widening-
with-threshold technique. Also, the results show that, with our technique, the widening with
threshold can be effectively used even with a large set of thresholds. We have tested five GNU
open-source programs. We compared the precision and cost of our technique based on the standard
widening-with-threshold technique. In total, the standard method have reduced 478 alarms over the
five programs while our technique 378 alarms, achieving 79.1% (378/478) of precision. In doing so,
the standard method increased the analysis time by 1142 s and ours 210 s: our technique only has
18.5% (210/1142) overhead compared with the standard technique.

5. RELATED WORK

Our technique can be orthogonally used with existing threshold-inference techniques. Most existing
work on widening with thresholds have focused on the problem of determining threshold values
[2, 3, 7–11]. For instance, in [2, 7], the set of thresholds is inferred from the program text; integer
constants such as those used in conditional expressions are used as thresholds. In our experiments,
we also used this method to determine the threshold set and showed that our technique improves
its effectiveness. In [3], a more sophisticated method is proposed, where relevant thresholds are
inferred by a semantics-based pre-analysis. In [3], the number of thresholds used is not given, but
the experiments show that the analysis with the inferred threshold sometimes leads to significant
cost blow-up. Our technique can be used with these techniques to improve the efficiency.
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Comparing the widening-with-thresholds technique with other advanced extrapolation techniques
is beyond the scope of this paper. In the literature, many techniques have been proposed to refine
the naive application of widening operators [12–14]. Gopan and Reps [13] proposed the guided
static analysis framework that tames the widening by restricting the target program. Given a suit-
able program transformer (restriction strategy), they iteratively apply static analysis to the sequence
of restricted program. They provided two instances: (1) widening in loops with multiple phases,
which is a generalization of the lookahead widening [14] and (2) widening in loops with non-
deterministically chosen behavior. Widening with landmarks [12] dynamically generates and selects
the limit of widening (landmark), which can be considered as a refinement of widening with
thresholds. Whenever a polyhedron (current state) is intersected with another inequality that is unsat-
isfiable in the current iterate, the inequality is selected as a landmark. These techniques provide
means for improving widening, which is basically orthogonal to the widening-with-threshold tech-
nique. However, it would be an interesting direction to compare the effectiveness of these different
techniques in practice.

6. CONCLUSIONS

In this paper, we have presented a general and practical technique for efficiently performing widen-
ing with thresholds. Our technique employs a binary search in the process of applying the thresholds,
thereby reducing the number of ineffective trials. We formalize the technique in the abstract inter-
pretation framework, prove its correctness, and experimentally show that our technique has a better
cost/accuracy balance than the conventional one.

Our technique provides a new point in the design space of static analyzers that use widening. The
ideal solution to the performance problem of widening with thresholds would be to use a small yet
precision-effective set of thresholds. However, automatically finding such a set for a given program
is non-trivial. With our technique, the method of widening with thresholds can be effectively used
even when a conservative set of thresholds is used.
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