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Abstract. We present a method for automatically learning an effective
strategy for clustering variables for the Octagon analysis from a given
codebase. This learned strategy works as a preprocessor of Octagon.
Given a program to be analyzed, the strategy is first applied to the
program and clusters variables in it. We then run a partial variant of
the Octagon analysis that tracks relationships among variables within
the same cluster, but not across different clusters. The notable aspect of
our learning method is that although the method is based on supervised
learning, it does not require manually-labeled data. The method does
not ask human to indicate which pairs of program variables in the given
codebase should be tracked. Instead it uses the impact pre-analysis for
Octagon from our previous work and automatically labels variable pairs
in the codebase as positive or negative. We implemented our method
on top of a static buffer-overflow detector for C programs and tested it
against open source benchmarks. Our experiments show that the partial
Octagon analysis with the learned strategy scales up to 100KLOC and
is 33x faster than the one with the impact pre-analysis (which itself is
significantly faster than the original Octagon analysis), while increasing
false alarms by only 2%.

1 Introduction

Relational program analyses track sophisticated relationships among program
variables and enable the automatic verification of complex properties of pro-
grams [3, 8]. However, the computational costs of various operations of these
analyses are high so that vanilla implementations of the analyses do not scale
even to moderate-sized programs. For example, transfer functions of the Octagon
analysis [8] have a cubic worst-case time complexity in the number of program
variables, which makes it impossible to analyze large programs.

In this paper, we consider one of the most popular optimizations used by prac-
tical relational program analyses, called variable clustering [8, 15, 26, 1]. Given a
program, an analyzer with this optimization forms multiple relatively-small sub-
sets of variables, called variable clusters or clusters. Then, it limits the tracked
information to the relationships among variables within each cluster, not across



2 Kihong Heo, Hakjoo Oh, and Hongseok Yang

those clusters. So far strategies based on simple syntactic or semantic criteria
have been used for clustering variables for a given program, but they are not sat-
isfactory. They are limited to a specific class of target programs [26, 1] or employ
a pre-analysis that is cheaper than a full relational analysis but frequently takes
order-of-magnitude more time than the non-relational analysis for medium-sized
programs [15].

In this paper, we propose a new method for automatically learning a variable-
clustering strategy for the Octagon analysis from a given codebase. When applied
to a program, the learned strategy represents each pair of variables (xi, xj) in
the program by a boolean vector, and maps such a vector to ⊕ or 	, where ⊕
signifies the importance of tracking the relationship between xi and xj . If we
view such ⊕-marked (xi, xj) as an edge of a graph, the variant of Octagon in
this paper decides to track the relationship between variables x and y only when
there is a path from x to y in the graph. According to our experiments, running
this strategy for all variable pairs is quick and results in a good clustering of
variables, which makes the variant of Octagon achieve performance comparable
to the non-relational Interval analysis while enjoying the accuracy of the original
Octagon in many cases.

The most important aspect of our learning method is the automatic provision
of labeled data. Although the method is essentially an instance of supervised
learning, it does not require the common unpleasant involvement of humans in
supervised learning, namely, labeling. Our method takes a codebase consisting
of typical programs of small-to-medium size, and automatically generates labels
for pairs of variables in those programs by using the impact pre-analysis from
our previous work [15], which estimates the impact of tracking relationships
among variables by Octagon on proving queries in given programs. Our method
precisely labels a pair of program variables with ⊕ when the pre-analysis says
that the pair should be tracked. Because this learning occurs offline, we can
bear the cost of the pre-analysis, which is still significantly lower than the cost
of the full Octagon analysis. Once labeled data are generated, our method runs
an off-the-shelf classification algorithm, such as decision-tree inference [9], for
inferring a classifier for those labeled data. This classifier is used to map vector
representations of variable pairs to ⊕ or 	. Conceptually, the inferred classifier
is a further approximation of the pre-analysis, which gets found automatically
from a given codebase.

The experimental results show that our method results in the learning of a
cost-effective variable-clustering strategy. We implemented our learning method
on top of a static buffer overflow detector for C programs and tested against open
source benchmarks. In the experiments, our analysis with the learned variable-
clustering strategy scales up to 100KLOC within the two times of the analysis
cost of the Interval analysis. This corresponds to the 33x speed-up of the selective
relational analysis based on the impact pre-analysis [15] (which was already
significantly faster than the original Octagon analysis). The price of speed-up
was mere 2% increase of false alarms.

We summarize the contributions of this paper below:
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1. We propose a method for automatically learning an effective strategy for
variable-clustering for the Octagon analysis from a given codebase. The
method infers a function that decides, for a program P and a pair of variables
(x, y) in P , whether tracking the relationship between x and y is important.
The learned strategy uses this function to cluster variables in a given pro-
gram.

2. We show how to automatically generate labeled data from a given codebase
that are needed for learning. Our key idea is to generate such data using the
impact pre-analysis for Octagon from [15]. This use of the pre-analysis means
that our learning step is just the process of finding a further approximation
of the pre-analysis, which avoids expensive computations of the pre-analysis
but keeps its important estimations.

3. We experimentally show the effectiveness of our learning method using a
realistic static analyzer for full C and open source benchmarks. Our variant
of Octagon with the learned strategy is 33x faster than the selective relational
analysis based on the impact pre-analysis [15] while increasing false alarms
by only 2%.

2 Informal Explanation

2.1 Octagon Analysis with Variable Clustering

We start with informal explanation of our approach using the program in Figure
1. The program contains two queries about the relationships between i and
variables a, b inside the loop. The first query i < a is always true because
the loop condition ensures i < b and variables a and b have the same value
throughout the loop. The second query i < c, on the other hand, may become
false because c is set to an unknown input at line 2.

The Octagon analysis [8] discovers program invariants strong enough to prove
the first query in our example. At each program point it infers an invariant of
the form (∧

ij

Lij ≤ xj + xi ≤ Uij
)
∧
(∧
ij

L′ij ≤ xj − xi ≤ U ′ij
)

for Lij , L
′
ij ∈ Z∪{−∞} and Uij , U

′
ij ∈ Z∪{∞}. In particular, at the first query

of our program, the analysis infers the following invariant, which we present in
the usual matrix form:

a −a b −b c −c i −i
a 0 ∞ 0 ∞ ∞ ∞ −1 ∞
−a ∞ 0 ∞ 0 ∞ ∞ ∞ ∞
b 0 ∞ 0 ∞ ∞ ∞ −1 ∞
−b ∞ 0 ∞ 0 ∞ ∞ ∞ ∞
c ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
−c ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞
i ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
−i ∞ −1 ∞ −1 ∞ ∞ ∞ 0

(1)
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1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

Fig. 1. Example Program

The ij-th entry mij of this matrix means an upper bound ej − ei ≤ mij , where
ej and ei are expressions associated with the j-th column and the i-th row of
the matrix respectively and they are variables with or without the minus sign.
The matrix records −1 and∞ as upper bounds for i−a and i−c, respectively.
Note that these bounds imply the first query, but not the second.

In practice the Octagon analysis is rarely used without further optimiza-
tion, because it usually spends a large amount of computational resources for
discovering unnecessary relationships between program variables, which do not
contribute to proving given queries. In our example, the analysis tracks the re-
lationship between c and i, although it does not help prove any of the queries.

A standard approach for addressing this inefficiency is to form subsets of vari-
ables, called variable clusters or clusters. According to a pre-defined clustering
strategy, the analysis tracks the relationships between only those variables within
the same cluster, not across clusters. In our example, this approach would form
two clusters {a, b, i} and {c} and prevent the Octagon analysis from tracking
the unnecessary relationships between c and the other variables. The success of
the approach lies in finding a good strategy that is able to find effective clusters
for a given program. This is possible as demonstrated in the several previous
work [15, 26, 1], but it is highly nontrivial and often requires a large amount of
trial and error of analysis designers.

Our goal is to develop a method for automatically learning a good variable-
clustering strategy for a target class of programs. This automatic learning hap-
pens offline with a collection of typical sample programs from the target class,
and the learned strategy is later applied to any programs in the class, most
of which are not used during learning. We want the learned strategy to form
relatively-small variable clusters so as to lower the analysis cost and, at the
same time, to put a pair of variables in the same cluster if tracking their rela-
tionship by Octagon is important for proving given queries. For instance, such a
strategy would cluster variables of our example program into two groups {a, b, i}
and {c}, and make Octagon compute the following smaller matrix at the first
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query:
a −a b −b i −i

a 0 ∞ 0 ∞ −1 ∞
−a ∞ 0 ∞ 0 ∞ ∞
b 0 ∞ 0 ∞ −1 ∞
−b ∞ ∞ ∞ 0 ∞ ∞
i ∞ ∞ ∞ ∞ 0 ∞
−i ∞ −1 ∞ −1 ∞ ∞

(2)

2.2 Automatic Learning of a Variable-Clustering Strategy

In this paper we will present a method for learning a variable-clustering strategy.
Using a given codebase, it infers a function F that maps a tuple (P, (x, y)) of a
program P and variables x, y in P to ⊕ and 	. The output ⊕ here means that
tracking the relationship between x and y is likely to be important for proving
queries. The inferred F guides our variant of the Octagon analysis. Given a
program P , our analysis applies F to every pair of variables in P , and computes
the finest partition of variables that puts every pair (x, y) with the ⊕ mark in the
same group. Then, it analyzes the program P by tracking relationships between
variables within each group in the partition, but not across groups.

Our method for learning takes a codebase that consists of typical programs
in the intended application of the analysis. Then, it automatically synthesizes
the above function F in two steps. First, it generates labeled data automatically
from programs in the codebase by using the impact pre-analysis for Octagon
from our previous work [15]. This is the most salient aspect of our approach; in
a similar supervised-learning task, such labeled data are typically constructed
manually, and avoiding this expensive manual labelling process is considered a
big challenge for supervised learning. Next, our approach converts labeled data
to boolean vectors marked with ⊕ or 	, and runs an off-the-shelf supervised
learning algorithm to infer a classifier, which is used to define F .

Automatic Generation of Labeled Data Labeled data in our case are a
collection of triples (P, (x, y), L) where P is a program, (x, y) is a pair of variables
in P , and L ∈ {⊕,	} is a label that indicates whether tracking the relationship
between x and y is important. We generate such labeled data automatically from
the programs P1, . . . , PN in the given codebase.

The key idea is to use the impact pre-analysis for Octagon [15], and to convert
the results of this pre-analysis to labeled data. Just like the Octagon analysis,
this pre-analysis tracks the relationships between variables, but it aggressively
abstracts any numerical information so as to achieve better scalability than Oc-
tagon. The goal of the pre-analysis is to identify, as much as possible, the case
that Octagon would give a precise bound for ±x± y, without running Octagon
itself. As in Octagon, the pre-analysis computes a matrix with rows and columns
for variables with or without the minus sign, but this matrix m] contains F or
>, instead of any numerical values. For instance, when applied to our example
program, the pre-analysis would infer the following matrix at the first query:
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a −a b −b c −c i −i
a F > F > > > F >
−a > F > F > > > >
b F > F > > > F >
−b > F > F > > > >
c > > > > F > > >
−c > > > > > F > >
i > > > > > > F >
−i > F > F > > > F

(3)

Each entry of this matrix stores the pre-analysis’s (highly precise on the positive
side) prediction on whether Octagon would put a finite upper bound at the
corresponding entry of its matrix at the same program point. F means likely,
and > unlikely. For instance, the above matrix contains F for the entries for i−b
and b−a, and this means that Octagon is likely to infer finite (thus informative)
upper bounds of i− b and b− a. In fact, this predication is correct because the
actual upper bounds inferred by Octagon are −1 and 0, as can be seen in (1).

We convert the results of the impact pre-analysis to labeled data as follows.
For every program P in the given codebase, we first collect all queries Q =
{q1, . . . , qk} that express legal array accesses or the success of assert statements
in terms of upper bounds on ±x± y for some variables x, y. Next, we filter out
queries qi ∈ Q such that the upper bounds associated with qi are not predicted to
be finite by the pre-analysis. Intuitively, the remaining queries are the ones that
are likely to be proved by Octagon according to the prediction of the pre-analysis.
Then, for all remaining queries q′1, . . . , q

′
l, we collect the results m]

1, . . . ,m
]
l of the

pre-analysis at these queries, and generate the following labeled data:

DP = {(P, (x, y), L) |
L = ⊕ ⇐⇒ at least one of the entries of some mi for ±x± y has F}.

Notice that we mark (x, y) with ⊕ if tracking the relationship between x and y
is useful for some query q′i. An obvious alternative is to replace some by all, but
we found that this alternative led to the worse performance in our experiments.4

This generation process is applied for all programs P1, . . . , PN in the codebase,
and results in the following labeled data: D =

⋃
1≤i≤N DPi

. In our example
program, if the results of the pre-analysis at both queries are the same matrix in
(3), our approach picks only the first matrix because the pre-analysis predicts a
finite upper bound only for the first query, and it produces the following labeled
data from the first matrix:

{(P, t,⊕) | t ∈ T} ∪ {(P, t,	) | t 6∈ T}

where T = {(a, b), (b, a), (a, i), (i, a), (b, i), (i, b), (a, a), (b, b), (c, c), (i, i)}.
4 Because the pre-analysis uses F cautiously, only a small portion of variable pairs is

marked with ⊕ (that is, 5864/258, 165, 546) in our experiments. Replacing “some”
by “all” reduces this portion by half (2230/258, 165, 546) and makes the learning
task more difficult.
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Application of an Off-the-shelf Classification Algorithm Once we gener-
ate labeled data D, we represent each triple in D as a vector of {0, 1} labeled with
⊕ or 	, and apply an off-the-shelf classification algorithm, such as decision-tree
inference [9].

The vector representation of each triple in D is based on a set of so called
features, which are syntactic or semantic properties of a variable pair (x, y) under
a program P . Formally, a feature f maps such (P, (x, y)) to 0 or 1. For instance,
f may check whether the variables x and y appear together in an assignment of
the form x = y+c in P , or it may test whether x or y is a global variable. Table 1
lists all the features that we designed and used for our variant of the Octagon
analysis. Let us denote these features and results of applying them using the
following symbols:

f = {f1, . . . , fm}, f(P, (x, y)) =
(
f1(P, (x, y)), . . . , fm(P, (x, y))

)
∈ {0, 1}m.

The vector representation of triples in D is the following set:

V = {(f(P, (x, y)), L) | (P, (x, y), L) ∈ D} ∈ ℘({0, 1}m × {⊕,	})

We apply an off-the-self classification algorithm to the set. In our experiments,
the algorithm for learning a decision tree gave the best classifier for our variant
of the Octagon analysis.

3 Octagon Analysis with Variable Clustering

In this section, we describe a variant of the Octagon analysis that takes not just
a program to be analyzed but also clusters of variables in the program. Such clus-
ters are computed according to some strategy before the analysis is run. Given
a program and variable clusters, this variant Octagon analysis infers relation-
ships between variables within the same cluster but not across different clusters.
Section 4 presents our method for automatically learning a good strategy for
forming such variable clusters.

3.1 Programs

A program is represented by a control-flow graph (C, ↪→), where C is the set of
program points and (↪→) ⊆ C×C denotes the control flows of the program. Let
Varn = {x1, . . . , xn} be the set of variables. Each program point c ∈ C has a
primitive command working with these variables. When presenting the formal
setting and our results, we mostly assume the following collection of simple
primitive commands:

cmd ::= x = k | x = y + k | x = ?

where x, y are program variables, k ∈ Z is an integer, and x = ? is an assignment
of some nondeterministically-chosen integer to x. The Octagon analysis is able to
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handle the first two kinds of commands precisely. The last command is usually
an outcome of a preprocessor that replaces a complex assignment such as non-
linear assignment x = y ∗ y + 1 (which cannot be analyzed accurately by the
Octagon analysis) by this overapproximating non-deterministic assignment.

3.2 Octagon Analysis

We briefly review the Octagon analysis in [8]. Let Varn = {x1, . . . , xn} be the
set of variables that appear in a program to be analyzed. The analysis aims at
finding the upper and lower bounds of expressions of the forms xi, xi + xj and
xi − xj for variables xi, xj ∈ Varn. The analysis represents these bounds as a
(2n× 2n) matrix m of values in Z∪{∞}, which means the following constraint:∧

(1≤i,j≤n)

∧
(k,l∈{0,1})

((−1)l+1xj − (−1)k+1xi) ≤ m(2i−k)(2j−l)

The abstract domain O of the Octagon analysis consists of all those matrices
and ⊥, and uses the following pointwise order: for m,m′ ∈ O,

m v m′ ⇐⇒ (m = ⊥) ∨ (m 6= ⊥ ∧m′ 6= ⊥ ∧ ∀1 ≤ i, j ≤ 2n. (mij ≤ m′ij)).

This domain is a complete lattice (O,v,⊥,>,t,u) where > is the matrix con-
taining only ∞ and t and u are defined pointwise. The details of the lattice
structure can be found in [8].

Usually multiple abstract elements of O mean constraints with the same
set of solutions. If we fix a set S of solutions and collect in the set M all the
abstract elements with S as their solutions, the set M always contains the least
element according to the v order. There is a cubic-time algorithm for computing
this least element from any m ∈ M . We write m• to denote the result of this
algorithm, and call it strong closure of m.

The abstract semantics of primitive commands JcmdK : O→ O is defined in
Figure 2. The effects of the first two assignments in the concrete semantics can
be tracked precisely using abstract elements of Octagon. The abstract semantics
of these assignments do such tracking. Jxi = ?Km in the last case computes the
strong closure of m and forgets any bounds involving xi in the resulting abstract
element m•. The analysis computes a pre-fixpoint of the semantic function F :
(C→ O)→ (C→ O) (i.e., XI with F (XI)(c) v XI(c) for all c ∈ C):

F (X)(c) = Jcmd(c)K(
⊔
c′↪→c

X(c′))

where cmd(c) is the primitive command associated with the program point c.

3.3 Variable Clustering and Partial Octagon Analysis

We use a program analysis that performs the Octagon analysis only partially.
This variant of Octagon is similar to those in [8, 15]. This partial Octagon anal-
ysis takes a collection Π of clusters of variables, which are subsets π of variables
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Jxi = kKm = m′ when m′pq =


−2k p = 2i− 1 ∧ q = 2i
2k p = 2i ∧ q = 2i− 1(
Jxi = ?Km

)
pq

otherwise

Jxi = xj + kKm = m′ when m′pq =


−k p = 2i− 1 ∧ q = 2j − 1
−k p = 2j ∧ q = 2i
k p = 2j − 1 ∧ q = 2i− 1
k p = 2i ∧ q = 2j(
Jxi = ?Km

)
pq

otherwise

Jxi =?Km = ⊥ when m• = ⊥

Jxi =?Km = m′ when m• 6= ⊥ and m′pq =


∞ p ∈ {2i− 1, 2i} ∧ q 6∈ {2i− 1, 2i}
∞ p 6∈ {2i− 1, 2i} ∧ q ∈ {2i− 1, 2i}
0 p = q = 2i− 1 ∨ p = q = 2i
(m•)pq otherwise

Fig. 2. Abstract semantics of some primitive commands in the Octagon analysis. We
show the case that the input m is not ⊥; the abstract semantics always maps ⊥ to ⊥.
Also, in xi = xj + k, we consider only the case that i 6= j.

in Varn such that
⋃
π∈Π π = Varn. Each π ∈ Π specifies a variable cluster

and instructs the analysis to track relationships between variables in π. Given
such a collection Π, the partial Octagon analysis analyzes the program using
the complete lattice (OΠ ,vΠ ,⊥Π ,>Π ,tΠ ,uΠ) where

OΠ =
∏
π∈Π

Oπ (Oπ is the lattice of Octagon for variables in π).

That is, OΠ consists of families {mπ}π∈Π such that each mπ is an abstract
element of Octagon used for variables in π, and all lattice operations of OΠ are
the pointwise extensions of those of Octagon. For the example in Section 2, if
we use Π = {{a, b, c, i}}, the partial Octagon analysis uses the same domain
as Octagon’s. But if Π = {{a, b, i}, {c}}, the analysis uses the product of two
smaller abstract domains, one for {a, b, i} and the other for {c}.

The partial Octagon analysis computes a pre-fixpoint of the following FΠ :

FΠ : (C→ OΠ)→ (C→ OΠ), FΠ(X)(c) = Jcmd(c)KΠ(
⊔
c′↪→c

X(c′)).

Here the abstract semantics Jcmd(c)KΠ : OΠ → OΠ of the command c is defined
in terms of Octagon’s:

(Jxi = ?KΠpo)π =

{
Jxi = ?K(poπ) xi ∈ π
poπ otherwise

(Jxi = kKΠpo)π =

{
Jxi = kK(poπ) xi ∈ π
poπ otherwise

(Jxi = xj + kKΠpo)π =

{
Jxi = xj + kK(poπ) xi, xj ∈ π
Jxi = ?K(poπ) otherwise
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The abstract semantics of a command updates the component of an input ab-
stract state for a cluster π if the command changes any variable in the cluster;
otherwise, it keeps the component. The update is done according to the abstract
semantics of Octagon. Notice that the abstract semantics of xi = xj+k does not
track the relationship xj − xi = k in the π component when xi ∈ π but xj 6∈ π.
Giving up such relationships makes this partial analysis perform faster than the
original Octagon analysis.

4 Learning a Strategy for Clustering Variables

The success of the partial Octagon analysis lies in choosing good clusters of
variables for a given program. Ideally each cluster of variable should be relatively
small, but if tracking the relationship between variables xi and xj is important,
some cluster should contain both xi and xj . In this section, we present a method
for learning a strategy that chooses such clusters. Our method takes as input
a collection of programs, which reflects a typical usage scenario of the partial
Octagon analysis. It then automatically learns a strategy from this collection.

In the section we assume that our method is given {P1, . . . , PN}, and we let

P = {(P1, Q1), . . . , (PN , QN )},

where Qi means a set of queries in Pi. It consists of pairs (c, p) of a program
point c of Pi and a predicate p on variables of Pi, where the predicate express
an upper bound on variables or their differences, such as xi − xj ≤ 1. Another
notation that we adopt is VarP for each program P , which means the set of
variables appearing in P .

4.1 Automatic Generation of Labeled Data

The first step of our method is to generate labeled data from the given collection
P of programs and queries. In theory the generation of this labeled data can be
done by running the full Octagon analysis. For every (Pi, Qi) in P, we run the
Octagon analysis for Pi, and collect queries in Qi that are proved by the analysis.
Then, we label a pair of variable (xj , xk) in Pi with ⊕ if (i) a nontrivial5 upper
or lower bound (xi, xk) is computed by the analysis at some program point c in
Pi and (ii) the proof of some query by the analysis depends on this nontrivial
upper bound. Otherwise, we label the pair with 	. The main problem with this
approach is that we cannot analyze all the programs in P with Octagon because
of the scalability issue of Octagon.

In order to lessen this scalability issue, we instead run the impact pre-analysis
for Octagon from our previous work [15], and convert its results to labeled data.
Although this pre-analysis is not as cheap as the Interval analysis, it scales far
better than Octagon and enables us to generate labeled data from a wide range
of programs. Our learning method then uses the generated data to find a strategy
for clustering variables. The found strategy can be viewed as an approximation
of this pre-analysis that scales as well as the Interval analysis.

5 By nontrivial, we mean finite bounds that are neither ∞ nor −∞.
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Jxi = kK]m] = m]
1 when (m]

1)pq =


F p = 2i− 1 ∧ q = 2i
F p = 2i ∧ q = 2i− 1(
Jxi = ?K]m]

)
pq

otherwise

Jxi = xj + kK]m] = m]
1 when (m]

1)pq =


F p = 2i− 1 ∧ q = 2j − 1
F p = 2j ∧ q = 2i
F p = 2j − 1 ∧ q = 2i− 1
F p = 2i ∧ q = 2j(
Jxi = ?K]m]

)
pq

otherwise

Jxi =?K]m] = m]
1 when (m]

1)pq =


> p ∈ {2i− 1, 2i} ∧ q 6∈ {2i− 1, 2i}
> p 6∈ {2i− 1, 2i} ∧ q ∈ {2i− 1, 2i}
F p = q = 2i− 1 ∨ p = q = 2i

((m])•)pq otherwise

Fig. 3. Abstract semantics of some primitive commands in the impact pre-analysis. In
xi = xj + k, we show only the case that i 6= j.

Impact Pre-analysis We review the impact pre-analysis from [15], which aims
at quickly predicting the results of running the Octagon analysis on a given
program P . Let n = |VarP |, the number of variables in P . At each program
point c of P , the pre-analysis computes a (2n × 2n) matrix m] with entries in
{F,>}. Intuitively, such a matrix m] records which entries of the matrix m
computed by Octagon are likely to contain nontrivial bounds. If the ij-th entry
of m] is F, the ij-th entry of m is likely to be non-∞ according to the prediction
of the pre-analysis. The pre-analysis does not make similar prediction for entries
of m] with >. Such entries should be understood as the absence of information.

The pre-analysis uses a complete lattice (O],v],⊥],>],t],u]) where O] con-
sists of (2n × 2n) matrices of values in {F,>}, the order v] is the pointwise
extension of the total order F v >, and all the other lattice operations are de-
fined pointwise. There is a Galois connection between the powerset lattice ℘(O)
(with the usual subset order) and O]:

γ : O] → ℘(O), γ(m]) = {⊥} ∪ {m ∈ O | ∀i, j. (m]
ij = F =⇒ mij 6=∞)},

α : ℘(O)→ O], α(M)ij = F ⇐⇒ (
⊔
M 6= ⊥ =⇒ (

⊔
M)ij 6=∞).

The pre-analysis uses the abstract semantics JcmdK] : O] → O] that is derived
from this Galois connection and the abstract semantics of the same command
in Octagon (Figure 2). Figure 3 shows the results of this derivation.

Automatic Labeling For every (Pi, Qi) ∈ P, we run the pre-analysis on Pi,
and get an analysis result Xi that maps each program point in Pi to a matrix
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in O]. From such Xi, we generate labeled data D as follows:

Q′i = {c | ∃p. (c, p) ∈ Qi ∧ the jk entry is about the upper bound claimed in p

∧Xi(c) 6= ⊥ ∧Xi(c)jk = F},

D =
⋃

1≤i≤N

{(Pi, (xj , xk), L) | L = ⊕ ⇐⇒
∃c ∈ Q′i.∃l,m ∈ {0, 1}. Xi(c)(2j−l)(2k−m) = F}.

Notice that we label (xj , xk) with ⊕ if tracking their relationship is predicted to
be useful for some query according to the results of the pre-analysis.

4.2 Features and Classifier

The second step of our method is to represent labeled data D as a set of boolean
vectors marked with ⊕ or 	, and to run an off-the-shelf algorithm for inferring
a classifier with this set of labeled vectors. The vector representation assumes a
collection of features f = {f1, . . . , fm}, each of which maps a pair (P, (x, y)) of
program P and variable pair (x, y) to 0 or 1. The vector representation is the
set V defined as follows:

f(P, (x, y)) =
(
f1(P, (x, y)), . . . , fm(P, (x, y))

)
∈ {0, 1}m,

V = {(f(P, (x, y)), L) | (P, (x, y), L) ∈ D} ∈ ℘({0, 1}m × {⊕,	}).

An off-the-shelf algorithm computes a binary classifier C from V:

C : {0, 1}m → {⊕,	}.

In our experiments, V has significantly more vectors marked with 	 than those
marked with ⊕. We found that the algorithm for inferring a decision tree [9]
worked the best for our V

Table 1 shows the features that we developed for the Octagon analysis and
used in our experiments. These features work for real C programs (not just
those in the small language that we have used so far in the paper), and they
are all symmetric in the sense that fi(P, (x, y)) = fi(P, (y, x)). Features 1–6
detect good situations where the Octagon analysis can track the relationship
between variables precisely. For example, f1(P, (x, y)) = 1 when x and y appear
in an assignment x = y + k or y = x + k for some constant k in the program
P . Note that the abstract semantics of these commands in Octagon do not
lose any information. The next features 7–11, on the other hand, detect bad
situations where the Octagon analysis cannot track the relationship between
variables precisely. For example, f7(P, (x, y)) = 1 when x or y gets multiplied by
a constant different from 1 in a command of P , as in the assignments y = x∗2 and
x = y∗2. Notice that these assignments set up relationships between x and y that
can be expressed only approximately by Octagon. We have found that detecting
both good and bad situations is important for learning an effective variable-
clustering strategy. The remaining features (12–30) describe various syntactic
and semantics properties about program variables that often appear in typical
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Table 1. Features for relations of two variables.

i Description of feature fi(P, (x, y)). k represents a constant.

1 P contains an assignment x = y + k or y = x+ k.
2 P contains a guard x ≤ y + k or y ≤ x+ k.
3 P contains a malloc of the form x = malloc(y) or y = malloc(x).
4 P contains a command x = strlen(y) or y = strlen(x).
5 P sets x to strlen(y) or y to strlen(x) indirectly, as in t = strlen(y);x = t.
6 P contains an expression of the form x[y] or y[x].
7 P contains an expression that multiplies x or y by a constant different from 1.
8 P contains an expression that multiplies x or y by a variable.
9 P contains an expression that divides x or y by a variable.
10 P contains an expression that has x or y as an operand of bitwise operations.
11 P contains an assignment that updates x or y using non-Octagonal expressions.
12 x and y are has the same name in different scopes.
13 x and y are both global variables in P .
14 x or y is a global variable in P .
15 x or y is a field of a structure in P .
16 x and y represent sizes of some arrays in P .
17 x and y are temporary variables in P .
18 x or y is a local variable of a recursive function in P .
19 x or y is tested for the equality with ±1 in P .
20 x and y represent sizes of some global arrays in P .
21 x or y stores the result of a library call in P .
22 x and y are local variables of different functions in P .
23 {x, y} consists of a local var. and the size of a local array in different fun. in P .
24 {x, y} consists of a local var. and a temporary var. in different functions in P .
25 {x, y} consists of a global var. and the size of a local array in P .
26 {x, y} contains a temporary var. and the size of a local array in P .
27 {x, y} consists of local and global variables not accessed by the same fun. in P .
28 x or y is a self-updating global var. in P .
29 The flow-insensitive analysis of P results in a finite interval for x or y.
30 x or y is the size of a constant string in P .

C programs. For the semantic features, we use the results of a flow-insensitive
analysis that quickly computes approximate information about pointer aliasing
and ranges of numerical variables.

4.3 Strategy for Clustering Variables

The last step is to define a strategy that takes a program P , especially one not
seen during learning, and clusters variables in P . Assume that a program P is
given and let VarP be the set of variables in P . Using features f and inferred
classifier C, our strategy computes the finest partition of VarP ,

Π = {π1, . . . , πk} ⊆ ℘(VarP ),

such that for all (x, y) ∈ VarP ×VarP , if we let F = C ◦ f , then

F(P, (x, y)) = ⊕ =⇒ x, y ∈ πi for some πi ∈ Π.



14 Kihong Heo, Hakjoo Oh, and Hongseok Yang

The partition Π is the clustering of variables that will be used by the par-
tial Octagon analysis subsequently. Notice that although the classifier does not
indicate the importance of tracking the relationship between some variables x
and z (i.e., F(P, (x, z)) = 	), Π may put x and z in the same π ∈ Π, if
F(P, (x, y)) = F(P, (y, z)) = ⊕ for some y. Effectively, our construction of Π
takes the transitive closure of the raw output of the classifier on variables. In our
experiments, taking this transitive closure was crucial for achieving the desired
precision of the partial Octagon analysis.

5 Experiments

We describe the experimental evaluation of our method for learning a variable-
clustering strategy. The evaluation aimed to answer the following questions:

1. Effectiveness: How well does the partial Octagon with a learned strategy
perform, compared with the existing Interval and Octagon analyses?

2. Generalization: Does the strategy learned from small programs also work
well for large unseen programs?

3. Feature design: How should we choose a set of features in order to make
our method learn a good strategy?

4. Choice of an off-the-shelf classification algorithm: Our method uses
a classification algorithm for inferring a decision tree by default. How much
does this choice matter for the performance of our method?

We conducted our experiments with a realistic static analyzer and open-
source C benchmarks. We implemented our method on top of Sparrow, a static
buffer-overflow analyzer for real-world C programs [25]. The analyzer performs
the combination of the Interval analysis and the pointer analysis based on
allocation-site abstraction with several precision-improving techniques such as
fully flow-, field-sensitivity and selective context-sensitivity [15]. In our exper-
iments, we modified Sparrow to use the partial Octagon analysis as presented
in Section 3, instead of Interval. The partial Octagon was implemented on top
of the sparse analysis framework [14, 13], so it is significantly faster than the
vanilla Octagon analysis [8]. For the implementation of data structures and ab-
stract operations for Octagon, we tried the OptOctagons plugin [24] of the Apron
framework [6]. For the decision tree learning, we used Scikit-learn [17]. We used
17 open-source benchmark programs (Table 2) and all the experiments were
done on a Ubuntu machine with Intel Xeon clocked at 2.4GHz cpu and 192GB
of main memory.

5.1 Effectiveness

We evaluated the effectiveness of a strategy learned by our method on the cost
and precision of Octagon. We compared the partial Octagon analysis with a
learned variable-clustering strategy with the Interval analysis and the approach
for optimizing Octagon in [15]. The approach in [15] also performs the partial
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Table 2. Comparison of performance of the Interval analysis and two partial Octagon
analyses, one with a fixed strategy based on the impact pre-analysis and the other with
a learned strategy. LOC reports lines of code before preprocessing. Var reports the
number of program variables (more precisely, abstract locations). #Alarms reports
the number of buffer-overflow alarms reported by the interval analysis (Itv), the partial
Octagon analysis with a fixed strategy (Impt) and that with a learned strategy (ML).
Time shows the analysis time in seconds, where, in X(Y), X means the total time
(including that for clustering and the time for main analysis) and Y shows the time
spent by the strategy for clustering variables.

#Alarms Time(s)
Program LOC Var Itv Impt ML Itv Impt ML

brutefir-1.0f 103 54 4 0 0 0 0 ( 0) 0 ( 0)
consolcalculator-1.0 298 165 20 10 10 0 0 ( 0) 0 ( 0)
id3-0.15 512 527 15 6 6 0 0 ( 0) 1 ( 0)
spell-1.0 2,213 450 20 8 17 0 1 ( 1) 1 ( 0)
mp3rename-0.6 2,466 332 33 3 3 0 1 ( 0) 1 ( 0)
irmp3-0.5.3.1 3,797 523 2 0 0 1 2 ( 0) 3 ( 1)
barcode-0.96 4,460 1,738 235 215 215 2 9 ( 7) 6 ( 1)
httptunnel-3.3 6,174 1,622 52 29 27 3 35 ( 32) 5 ( 1)
e2ps-4.34 6,222 1,437 119 58 58 3 6 ( 3) 3 ( 0)
bc-1.06 13,093 1,891 371 364 364 14 252 ( 238) 16 ( 1)
less-382 23,822 3,682 625 620 625 83 2,354 ( 2,271) 87 ( 4)
bison-2.5 56,361 14,610 1,988 1,955 1,955 137 4,827 ( 4,685) 237 ( 79)
pies-1.2 66,196 9,472 795 785 785 49 14,942 (14,891) 95 ( 43)
icecast-server-1.3.12 68,564 6,183 239 232 232 51 109 ( 55) 107 ( 42)
raptor-1.4.21 76,378 8,889 2,156 2,148 2,148 242 17,844 (17,604) 345 (104)
dico-2.0 84,333 4,349 402 396 396 38 156 ( 117) 51 ( 24)
lsh-2.0.4 110,898 18,880 330 325 325 33 139 ( 106) 251 (218)

Total 7,406 7,154 7,166 656 40,677 (40,011) 1,207 (519)

Octagon analysis in Section 3 but with a fixed variable-clustering strategy that
uses the impact pre-analysis online (rather than offline as in our case): the strat-
egy runs the impact pre-analysis on a given program and computes variable
clusters of the program based on the results of the pre-analysis. Table 2 shows
the results of our comparison with 17 open-source programs. We used the leave-
one-out cross validation to evaluate our method; for each program P in the table,
we applied our method to the other 16 programs, learned a variable-clustering
strategy, and ran the partial Octagon on P with this strategy.

The results show that the partial Octagon with a learned strategy strikes the
right balance between precision and cost. In total, the Interval analysis reports
7,406 alarms from the benchmark set.6 The existing approach for partial Oc-
tagon [15] reduced the number of alarms by 252, but increased the analysis time

6 In practice, eliminating these false alarms is extremely challenging in a sound yet
non-domain-specific static analyzer for full C. The false alarms arise from a variety
of reasons, e.g., recursive calls, unknown library calls, complex loops, etc.
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Table 3. Generalization performance.

#Alarms Time
Program LOC Var Itv All Small Itv All Small

pies-1.2 66,196 9,472 795 785 785 49 95 ( 43) 98 ( 43)
icecast-server-1.3.12 68,564 6,183 239 232 232 51 113 ( 42) 99 ( 42)
raptor-1.4.21 76,378 8,889 2,156 2,148 2,148 242 345 (104) 388 (104)
dico-2.0 84,333 4,349 402 396 396 38 61 ( 24) 62 ( 24)
lsh-2.0.4 110,898 18,880 330 325 325 33 251 (218) 251 (218)

Total 3,922 3,886 3,886 413 864 (432) 899 (432)

by 62x. Meanwhile, our learning-based approach for partial Octagon reduced the
number of alarms by 240 while increasing the analysis time by 2x.

We point out that in some programs, the precision of our approach was
incomparable with that of the approach in [15]. For instance, for spell-1.0,
our approach is less precise than that of [15] because some usage patterns of
variables in spell-1.0 do not appear in other programs. On the other hand,
for httptunnel-3.3, our approach produces better results because the impact
pre-analysis of [15] uses F conservatively and fails to identify some important
relationships between variables.

5.2 Generalization

Although the impact pre-analysis scales far better than Octagon, it is still too
expensive to be used routinely for large programs (> 100 KLOC). Therefore,
in order for our approach to scale, the variable-clustering strategy learned from
a codebase of small programs needs to be effective for large unseen programs.
Whether this need is met or not depends on whether our learning method gen-
eralize information from small programs to large programs well.

To evaluate this generalization capability of our learning method, we divided
the benchmark set into small (< 60 KLOC) and large (> 60 KLOC) programs,
learned a variable-clustering strategy from the group of small programs, and
evaluated its performance on that of large programs.

Table 3 shows the results. Columns labeled Small report the performance of
our approach learned from the small programs. All reports the performance of
the strategy used in Section 5.1 (i.e., the strategy learned with all benchmark
programs except for each target program). In our experiments, Small had the
same precision as All with negligibly increase in analysis time (4%). These results
show that the information learned from small programs is general enough to infer
the useful properties about large programs.

5.3 Feature Design

We identified top ten features that are most important to learn an effective
variable-clustering strategy for Octagon. We applied our method to all the 17
programs so as to learn a decision tree, and measured the relative importance
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of features by computing their Gini index [2] with the tree. Intuitively, the Gini
index shows how much each feature helps a learned decision tree to classify
variable pairs as ⊕ or 	. Thus, features with high Gini index are located in the
upper part of the tree.

According to the results, the ten most important features are 30, 15, 18, 16,
29, 6, 24, 23, 1, and 21 in Table 1. We found that many of the top ten features
are negative and describe situations where the precise tracking of variable rela-
tionships by Octagon is unnecessary. For instance, feature 30 (size of constant
string) and 29 (finite interval) represent variable pairs whose relationships can
be precisely captured even with the Interval analysis. Using Octagon for such
pairs is overkill. Initially, we conjectured that positive features, which describe
situations where the Octagon analysis is effective, would be the most important
for learning a good strategy. However, data show that effectively ruling out un-
necessary variable relationships is the key to learning a good variable-clustering
strategy for Octagon.

5.4 Choice of an off-the-shelf classification algorithm

Our learning method uses an off-the-shelf algorithm for inferring a decision tree.
In order to see the importance of this default choice, we replaced the decision-
tree algorithm by logistic regression [10], which is another popular supervised
learning algorithm and infers a linear classifier from labeled data. Such linear
classifiers are usually far simpler than nonlinear ones such as a decision tree. We
then repeated the leave-one-out cross validation described in Section 5.1.

In this experiment, the new partial Octagon analysis with linear classifiers
proved the same number of queries as before, but it was significantly slower than
the analysis with decision trees. Changing regularization in logistic regression
from nothing to L1 or L2 and varying regularization strengths (10−3, 10−4 and
10−5) did not remove this slowdown. We observed that in all of these cases,
inferred linear classifiers labeled too many variable pairs with ⊕ and led to
unnecessarily big clusters of variables. Such big clusters increased the analysis
time of the partial Octagon with decision trees by 10x–12x. Such an observation
indicates that a linear classifier is not expressive enough to identify important
variable pairs for the Octagon analysis.

6 Related Work

The scalability issue of the Octagon analysis is well-known, and there have been
various attempts to optimize the analysis [14, 24]. Oh et al. [14] exploited the data
dependencies of a program and removed unnecessary propagation of information
between program points during Octagon’s fixpoint computation. Singh et al. [24]
designed better algorithms for Octagon’s core operators and implemented a new
library for Octagon called OptOctagons, which has been incorporated in the
Apron framework [6]. These approaches are orthogonal to our approach, and all
of these three can be used together as in our implementation. We point out that
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although the techniques from these approaches [14, 24] improve the performance
of Octagon significantly, without additionally making Octagon partial with good
variable clusters, they were not enough to make Octagon scale large programs
in our experiments. This is understandable because the techniques keep the
precision of the original Octagon while making Octagon partial does not.

Existing variable-clustering strategies for the Octagon analysis use a simple
syntactic criterion for clustering variables [1] (such as selecting variable pairs
that appear in particular kinds of commands and forming one cluster for each
syntactic block), or a pre-analysis that attempts to identify important variable
pairs for Octagon [15]. When applied to large general-purpose programs (not
designed for embedded systems), the syntactic criterion led to ineffective variable
clusters, which made the subsequent partial Octagon analysis slow and fail to
achieve the desired precision [15]. The approach based on the pre-analysis [15], on
the other hand, has an issue with the cost of the pre-analysis itself; it is cheaper
than that of Octagon, but it is still expensive as we showed in the paper. In a
sense, our approach automatically learns fast approximation of the pre-analysis
from the results of running the pre-analysis on programs in a given codebase. In
our experiments, this approximation (which we called strategy) was 33x faster
than the pre-analysis while decreasing the number of proved queries by 2% only.

Recently there have been a large amount of research activities for develop-
ing data-driven approaches to challenging program analysis problems, such as
specification inference [20, 18], invariant generation [11, 19, 21–23, 4], acceleration
of abstraction refinement [5], and smart report of analysis results [7, 12, 27]. In
particular, Oh et al. [16] considered the problem of automatically learning anal-
ysis parameters from a codebase, which determine the heuristics used by the
analysis. They formulated this parameter learning as a blackbox optimization
problem, and proposed to use Bayesian optimization for solving the problem. Ini-
tially we followed this blackbox approach [16], and tried Bayesian optimization
to learn a good variable-clustering strategy with our features. In the experiment,
we learned the strategy from the small programs as in Section 5.2 and chose the
top 200 variable pairs which are enough to make a good clustering as precise as
our strategy; the learning process was too costly with larger training programs
and more variable pairs. This initial attempt was a total failure. The learning
process tried only 384 parameters and reduced 14 false alarms even during the
learning phase for a whole week, while our strategy reduced 240 false alarms.
Unlike the optimization problems for the analyses in [16], our problem was too
difficult for Bayesian optimization to solve. We conjecture that this was due to
the lack of smoothness in the objective function of our problem. This failure led
to the approach in this paper, where we replaced the blackbox optimization by
a much easier supervised-learning problem.

7 Conclusion

In this paper we proposed a method for learning a variable-clustering strategy
for the Octagon analysis from a codebase. One notable aspect of our method is
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that it generates labeled data automatically from a given codebase by running
the impact pre-analysis for Octagon [15]. The labeled data are then fed to an
off-the-shelf classification algorithm (in particular, decision-tree inference in our
implementation), which infers a classifier that can identify important variable
pairs from a new unseen program, whose relationships should be tracked by the
Octagon analysis. This classifier forms the core of the strategy that is returned
by our learning method. Our experiments show that the partial Octagon analysis
with the learned strategy scales up to 100KLOC and is 33x faster than the one
with the impact pre-analysis (which itself is significantly faster than the original
Octagon analysis), while increasing false alarms by only 2%.
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24. Gagandeep Singh, Markus Püschel, and Martin Vechev. Making Numerical Pro-
gram Analysis Fast. In PLDI, 2015.

25. Sparrow. http://ropas.snu.ac.kr/sparrow.
26. Arnaud Venet and Guillaume Brat. Precise and efficient static array bound check-

ing for large embedded C programs. In PLDI, 2004.
27. Kwangkeun Yi, Hosik Choi, Jaehwang Kim, and Yongdai Kim. An empirical study

on classification methods for alarms from a bug-finding static C analyzer. Infor-
mation Processing Letters, 102(2-3):118–123, 2007.


