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We present a technique for automatically generating features for data-driven program analyses. Recently data-

driven approaches for building a program analysis have been developed, which mine existing codebases and

automatically learn heuristics for finding a cost-effective abstraction for a given analysis task. Such approaches

reduce the burden of the analysis designers, but they do not remove it completely; they still leave the nontrivial

task of designing so called features to the hands of the designers. Our technique aims at automating this

feature design process. The idea is to use programs as features after reducing and abstracting them. Our

technique goes through selected program-query pairs in codebases, and it reduces and abstracts the program

in each pair to a few lines of code, while ensuring that the analysis behaves similarly for the original and the

new programs with respect to the query. Each reduced program serves as a boolean feature for program-query

pairs. This feature evaluates to true for a given program-query pair when (as a program) it is included in

the program part of the pair. We have implemented our approach for three real-world static analyses. The

experimental results show that these analyses with automatically-generated features are cost-effective and

consistently perform well on a wide range of programs.
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1 INTRODUCTION
In an ideal world, a static program analysis adapts to a given task automatically, so that it uses

expensive techniques for improving analysis precision only when those techniques are absolutely

necessary. In a real world, however, most static analyses are not capable of doing such automatic

adaptation. Instead, they rely on fixed manually-designed heuristics for deciding when these
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precision-improving but costly techniques should be applied. These heuristics are usually subop-

timal and brittle. More importantly, they are the outcomes of a substantial amount of laborious

engineering efforts of analysis designers.

Addressing these concerns with manually-designed heuristics has been the goal of a large

body of research in the program-analysis community [Ball and Rajamani 2002; Clarke et al. 2003;

Grebenshchikov et al. 2012; Gulavani et al. 2008; Gupta et al. 2013; Henzinger et al. 2004; Kastrinis

and Smaragdakis 2013; Naik et al. 2012; Oh et al. 2014; Smaragdakis et al. 2014; Zhang et al. 2014,

2013]. Recently researchers started to explore data-driven approaches, where a static analysis

uses a parameterized heuristic and the parameter values that maximize the analysis performance

are learned automatically from existing codebases via machine learning techniques [Cha et al.

2016; Grigore and Yang 2016; Heo et al. 2016; Oh et al. 2015]; the learned heuristic is then used

for analyzing previously unseen programs. The approaches have been used to generate various

cost-effective analysis heuristics automatically, for example, for controlling the degree of flow or

context-sensitivity [Oh et al. 2015], determining where to apply relational analysis [Heo et al. 2016],

or deciding the threshold values of widening operators [Cha et al. 2016].

However, these data-driven approaches have one serious drawback. Their successes crucially

depend on the qualities of so called features, which convert analysis inputs, such as programs and

queries, to the kind of inputs that machine learning techniques understand. Designing a right set

of features requires a nontrivial amount of knowledge and efforts of domain experts. Furthermore,

the features designed for one analysis do not usually generalize to others. For example, in [Oh et al.

2015], a total of 45 features were manually designed for controlling flow-sensitivity, but a new set

of 38 features were needed for controlling context-sensitivity. This manual task of crafting features

is a major impediment to the widespread adoption of data-driven approaches in practice, as in

other applications of machine learning techniques.

In this paper, we present a technique for automatically generating features for data-driven static

program analyses. From existing codebases, a static analysis with our technique learns not only an

analysis heuristic but also features necessary to learn the heuristic itself. In the first phase of this

learning process, a set of features appropriate for a given analysis task is generated from given

codebases. The next phase uses the generated features and learns an analysis heuristic from the

codebases. Our technique is underpinned by two key ideas. The first idea is to run a generic program

reducer (e.g., C-Reduce [Regehr et al. 2012]) on the codebases with a static analysis as a subroutine,

and to synthesize automatically feature programs, small pieces of code that minimally describe

when it is worth increasing the precision of the analysis. Intuitively these feature programs capture

programming patterns whose analysis results benefit greatly from the increased precision of the

analysis. The second idea is to generalize these feature programs and represent them by abstract

data-flow graphs. Such a graph becomes a boolean predicate on program slices, which holds for a

slice when the graph is included in it. We incorporate these ideas into a general framework that is

applicable to various parametric static analyses.

We show the effectiveness and generality of our technique by applying it to three analyses for

the C programming language: partially flow-sensitive interval and pointer analyses, and partial

Octagon analysis. Our technique successfully generated features relevant to each analysis, which

were then used for learning an effective analysis heuristic. The experimental results show that the

learned heuristics are effective in all analysis instances: our analyses consistently proved over 80%

of queries that demanded high precision while increasing the cost of the most imprecise analyses

only by 1.4x–2.4x.
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Contributions. We summarize our contributions below.

• We present a framework for automatically generating features for learning analysis heuris-

tics. The framework is general enough to be used for various kinds of analyses for the C

programming language such as interval, pointer, and Octagon analyses.

• We present a novel method that uses a program reducer for generating good feature programs,

which capture important behaviors of static analysis.

• We introduce the notion of abstract data-flow graphs and show how they can serve as generic

features for data-driven static analyses.

• We provide extensive experimental evaluations with three different kinds of static analyses.

Outline. We informally describe our approach in Section 2. The formal counterparts of this

description take up the next four sections: Section 3 for the definition of parametric static analyses

considered in the paper, Section 4 for an algorithm that learns heuristics for choosing appropriate

parameter values for a given analysis task, Section 5 for our technique for automatically generating

features, and Section 6 for instance analyses designed according to our approach. In Section 7, we

report the findings of the experimental evaluation of our approach. In Sections 8 and 9, we explain

the relationship between our approach and other prior works, and finish the paper with concluding

remarks.

2 OVERVIEW
We illustrate our approach using its instantiation with a partially flow-sensitive interval analysis.

Our interval analysis is query-based and partially flow-sensitive. It uses a classifier C that predicts,

for each query in a given program, whether flow-sensitivity is crucial for proving the query: the

query can be proved with flow-sensitivity but not without it. If the prediction is positive, the

analysis applies flow-sensitivity (FS) to the program variables that may influence the query: it

computes the data-flow slice of the query and tracks the variables in the slice flow-sensitively.

On the other hand, if the prediction is negative, the analysis applies flow-insensitivity (FI) to the

variables on which the query depends.

For example, consider the following program:

1 x = 0; y = 0; z = input(); w = 0;
2 y = x; y++;
3 assert (y > 0); // Query1
4 assert (z > 0); // Query2
5 assert (w == 0); // Query3

Query1 needs FS to prove, and Query2 is impossible to prove because the value of z comes from the

external input. Query3 is easily proved even with FI. Ideally, we want the classifier to give positive

prediction only to Query1, so that our analysis keeps flow-sensitive results only for the variables x
and y, on which Query1 depends, and analyzes other variables flow-insensitively. That is, we want

the analysis to compute the following result:

flow-sensitive result flow-insensitive result

line abstract state abstract state

1 {x 7→ [0, 0],y 7→ [0, 0]}
2 {x 7→ [0, 0],y 7→ [1, 1]}
3 {x 7→ [0, 0],y 7→ [1, 1]} {z 7→ ⊤,w 7→ [0, 0]}
4 {x 7→ [0, 0],y 7→ [1, 1]}
5 {x 7→ [0, 0],y 7→ [1, 1]}
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For x and y, the result keeps a separate abstract state at each program point, but for the other

variables z and w, it has just one abstract state for all program points. Note that we can prove

Query1 without precisely tracking x, but our approach gives it flow-sensitivity as we simply rely

on dependency relations to collect variables on which Query1 depends.

2.1 Learning a Classifier
The performance of the analysis crucially depends on the quality of its classifier C. Instead of

designing the classifier manually, we learn it from given codebases automatically. Let us illustrate

this learning process with a simple codebase of just one program P .
The input to the classifier learning is the collection {(q (i ),b (i ) )}ni=1 of queries in P labeled with

values 0 and 1. The label b (i ) indicates whether the corresponding query q (i ) can be proved with FS

but not with FI. These labeled data are automatically generated by analyzing the codebase {P } and
identifying the queries that are proved with FS but not with FI.

Given such data {(q (i ),b (i ) )}ni=1, we learn a classifier C in two steps. First, we represent each

query q (i ) by a feature vector, which encodes essential properties of the query q (i ) in the program P
and helps learning algorithms to achieve good generalization. Formally, we transform the original

data {(q (i ),b (i ) )}ni=1 to {(v
(i ),b (i ) )}ni=1, where v

(i ) ∈ Bk = {0, 1}k is a binary feature vector of query

q (i ) . The dimension k of feature vectors denotes the number of features. Second, to this transformed

data set {(v (i ),b (i ) )}ni=1, we apply an off-the-shelf classification algorithm (such as decision tree)

and learn a classifier C : Bk → B, which takes a feature vector of a query and makes a prediction.

The success of this learning process relies heavily on howwe convert queries to feature vectors. If

the feature vector of a query ignores important information about the query for prediction, learning

a good classifier is impossible irrespective of learning algorithms used. In previous work [Cha et al.

2016; Heo et al. 2016; Oh et al. 2015], this feature engineering is done manually by analysis designers.

For a specific static analysis, they defined a set of features and used them to convert a query to a

feature vector. But as in other applications of machine learning, this feature engineering requires

considerable domain expertise and engineering efforts. Our goal is to automatically generate

high-quality features for this program-analysis application.

2.2 Automatic Feature Generation
We convert queries to feature vectors using a set of features Π = {π1, . . . ,πk } and a procedure

match. A feature πi encodes a property about queries. The match procedure takes a feature π , a
query q0 and a program P0 containing the query, and checks whether the slice of P0 that may affect

q0 satisfies the property encoded by π . If so, it returns 1, and otherwise, 0. Using Π and match, we
transform every query q in the program P of our codebase into a feature vector v :

v = ⟨match(π1,q, P ), . . . ,match(πk ,q, P )⟩.

2.2.1 Feature Generation. The unique aspect of our approach lies in our technique for generating
the feature set Π from given codebases automatically.

1
Two ideas make this automatic generation

possible.

Generating Feature Programs Using a Reducer. The first idea is to use a generic program reducer.

A reducer (e.g., C-Reduce [Regehr et al. 2012]) takes a program and a predicate, and iteratively

removes parts of the program as long as the predicate holds.

We use a reducer to generate a collection of small code snippets that describe cases where the

analysis can prove a query with FS but not with FI. We first collect a set of queries in codebases that

1
In our implementation, we partition the codebases to three groups: a training set for feature generation and learning, a

validation set for evaluating the quality of learned features, and a test set for evaluating the learned, final heuristic.
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1 a = 0;
2 while (1) {
3 b = unknown();
4 if (a > b)
5 if (a < 3)
6 assert (a < 5);
7 a++;
8 }

1 a = 0;
2 while (1) {
3 if (a < 3)
4 assert (a < 5);
5 a++;
6 }

x := c x ≺ c Q (x ≺ c)

x := x + c

(a) Original program (b) Feature program (c) Abstract data-flow graph (Feature)

Fig. 1. Example program and feature.

require FS to prove. Then, for every query in the set, we run the reducer on the program containing

the query under the predicate that the query in the reduced program continues to be FS-provable

but FI-unprovable. The reducer removes all the parts from the program that are irrelevant to the

FS-provability and the FI-unprovability of the query, leading to a feature program.

For example, consider the example program in Figure 1(a). The assertion at line 6 can be proved

by the flow-sensitive interval analysis but not by the flow-insensitive one; with FS, the value of a
is restricted to the interval [0, 3] because of the condition at line 5. With FI, a has [0,+∞] at all
program points. We reduce this program as long as the flow-sensitive analysis proves the assertion

while the flow-insensitive one does not, resulting in the program in Figure 1(b). Note that the

reduced program only contains the key reasons (i.e., loop and if (a < 3)) for why FS works. For

example, the command if (a > b) is removed because even without it, the flow-sensitive analysis

proves the query. Running the reducer this way automatically removes these irrelevant parts of the

original program.

In experiments, we used C-Reduce [Regehr et al. 2012], which has been used for generating small

test cases that trigger compiler bugs. The original program in Figure 1(a) is too simplistic and does

not fully reflect the amount of slicing done by C-Reduce for real programs. In our experiments, we

found that C-Reduce is able to transform programs with >1KLOC to those with just 5–10 lines,

similar to the one in Figure 1(b).

Representing Feature Programs by Abstract Data-flow Graphs. The second idea is to represent the

feature programs by abstract data-flow graphs. We build graphs that describe the data flows of the

feature programs. Then, we abstract individual atomic commands in the graphs, for instance, by

replacing some constants and variables with the same fixed symbols c and x, respectively. The built
graphs form the collection of features Π.
For example, the feature program in Figure 1(b) is represented by the graph in Figure 1(c). The

graph captures the data flows of the feature program that influence the query. At the same time, the

graph generalizes the program by abstracting its atomic commands. All the variables are replaced

by the same symbol x, all integers by c, and all comparison operators by ≺, which in particular

makes the conditions a < 3 and a < 5 the same abstract condition x ≺ c.
How much should we abstract commands of the feature program? The answer depends on a

static analysis. If we abstract commands aggressively, this would introduce a strong inductive bias,

so that the algorithm for learning a classifier might have hard time for finding a good classifier for

given codebases but would require fewer data for generalization. Otherwise, the opposite situation

would occur. Our technique considers multiple abstraction levels, and automatically picks one to a

given static analysis using the combination of searching and cross-validation (Section 5).
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2.2.2 Matching Algorithm. By using the technique explained so far, we generate an abstract

data-flow graph for each FS-provable but FI-unprovable query in given codebases. These graphs

form the set of features, Π = {π1, . . . ,πk }.
The match procedure takes a feature (i.e., abstract data-flow graph) πi ∈ Π, a query q0, and a

program P0 containing q0. Then, it checks whether the slice of P0 that may affect q0 includes a
piece of code described by πi . Consider the query in the original program in Figure 1(a) and the

feature π in Figure 1(c). Checking whether the slice for the query includes the feature is done in

the following two steps.

We first represent the query in Figure 1(a) itself by an abstract data-flow graph:

x := c x ≺ c Q (x ≺ c)

x := x + cx ≺ xx := ⊤

Note that the graph is similar to the one in Figure 1(c), but contains extra parts. For instance, it has

the node x ≺ x and the edge from this node to x ≺ c, both of which are absent in the feature. The

unknown value, such as the return value of unknown(), is represented by ⊤.

Next, we use a variant of graph inclusion to decide whether the query includes the feature. We

check whether every vertex of the feature is included in the graph of the query and whether every

arc of the feature is included in the transitive closure of the graph. The answers to both questions are

yes. For instance, the path for the arc x:=x+c → x≺c in the feature is x:=x+c → x≺x → x≺c
in the graph of the query.

Note that we use a variant of graph inclusion where an arc of one graph is allowed to be realized

by a path of its including graph, not necessarily by an arc as in the usual definition. This variation

is essential for our purpose. When we check a feature against a query, the feature is reduced but the

query is not. Thus, even when the query here is the one from which the feature is generated, this

checking is likely to fail if we use the usual notion of graph inclusion (i.e.,G1 = (V1,E1) is included
in G2 = (V2,E2) iff V1 ⊆ V2 and E1 ⊆ E2). In theory, we could invoke a reducer on the query, but

this is not a viable option because reducing is just too expensive to perform every time we analyze

a program. Instead, we take a (less expensive) alternative based on the transitive closure of the

graph of the query.

3 SETTING
Parametric Static Analysis. We use the setting for parametric static analyses in [Liang et al. 2011].

Let P ∈ P be a program to analyze. We assume that a set QP of queries (i.e., assertions) in P is

given together with the program. The goal of the analysis is to prove as many queries as possible.

A static analysis is parameterized by a set of program components. We assume a set JP of program

components that represent parts of P . For instance, in our partially flow-sensitive analysis, JP is

the set of program variables. The parameter space is defined by (AP ,⊑) where AP is the binary

vector a ∈ AP = B
JP = {0, 1}JP with the pointwise ordering. We sometimes regard a parameter

a ∈ AP as a function from JP to B, or the set a = {j ∈ JP | aj = 1}. In the latter case, we write |a|
for the size of the set. We define two constants in AP : 0 = λj ∈ JP . 0 and 1 = λj ∈ JP . 1, which
represent the most imprecise and precise abstractions, respectively. We omit the subscript P when

there is no confusion. A parametric static analysis is a function F : P × A → ℘(Q), which takes

a program to analyze and a parameter, and returns a set of queries proved by the analysis under

the given parameter. In static analysis of C programs, using a more refined parameter typically

improves the precision of the analysis but increases the cost.
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Analysis Heuristic that Selects a Parameter. The parameter of the analysis is selected by an analysis

heuristic H : P → A. Given a program P , the analysis first applies the heuristic to P , and then

uses the resulting parameterH (P ) to analyze the program. That is, it computes F (P ,H (P )). If the
heuristic is good, running the analysis with H (P ) would give results close to those of the most

precise abstraction (F (P , 1)), while the analysis cost is close to that of the least precise abstraction

(F (P , 0)). Previously, such a heuristic was designed manually (e.g., [Kastrinis and Smaragdakis 2013;

Oh et al. 2014; Zhang et al. 2013]), which requires a large amount of engineering efforts of analysis

designers.

4 LEARNING AN ANALYSIS HEURISTIC
In a data-driven approach, an analysis heuristicH is automatically learned from given codebases.

In this section, we describe our realization of this approach while assuming that a set of features

is given; this assumption will be discharged in Section 5. We denote our method for learning a

heuristic by learn(F ,Π, P), which takes a static analysis F , a set Π of features, and codebases P, and
returns a heuristicH .

Learning a Classifier. In our method, learning a heuristicH boils down to learning a classifier C,

which predicts for each query whether the query can be proved by a static analysis with increased

precision but not without it. Suppose that we are given codebases P = {P1, . . . , Pn }, a set of features
Π = {π1, . . . ,πk }, and a procedure match. The precise definitions of Π and match will be given in

the next section. For now, it is sufficient just to know that a feature πi ∈ Π describes a property

about queries and match checks whether a query satisfies this property.

Using Π andmatch, we represent a query q ∈ QP in a program P by a feature vector Π(q, P ) ∈ Bk

such that the ith component of the vector is the result ofmatch(πi ,q, P ). This vector representation
enables us to employ the standard tools for learning and using a binary classifier. In our case, a

classifier is just a map C : Bk → B and predicts whether the query can be proved by the analysis

under high precision (such as flow-sensitivity) but not with low precision (such as flow-insensitivity).

To use such a classifier, we just need to call it with Π(q, P ). To learn it from codebases, we follow

the two steps described below:

(1) We generate labeled data D ⊆Bk×B from the codebases: D = {⟨Π(q, Pi ),bi ⟩ | Pi ∈ P ∧ q ∈
QPi }, where bi = (q ∈ F (Pi , 1) \ F (Pi , 0)). That is, for each program Pi ∈ P and a query q in

Pi , we represent the query by a feature vector and label it with 1 if q can be proved by the

analysis under the most precise setting but not under the least precise setting. When it is

infeasible to run the most precise analysis (e.g., the Octagon analysis), we instead run an

approximate version of it. In experiments with the partial Octagon analysis, we used the

impact pre-analysis [Oh et al. 2014] as an approximation.

(2) Then, we learn a classifier from the labeled data D by invoking an off-the-shelf learning

algorithm, such as logistic regression, decision tree, and support vector machine.

Building an Analysis Heuristic. We construct an analysis heuristicH : P→ A from a learned

classifier C as follows:

H (P ) =
⋃
{req(q) | q ∈ QP ∧ C (Π(q, P )) = 1}

The heuristic iterates over every query q ∈ QP in the program P , and selects the ones that get

mapped to 1 by the classifier C. For each of these selected queries, the heuristic collects the parts of P
that may affect the analysis result of the query. This collection is done by the function req : Q→ A,

which satisfies that q ∈ F (P , 1) =⇒ q ∈ F (P , req(q)) for all queries q in P . This function should be

specified by an analysis designer, but according to our experience, this is rather a straightforward

task. For instance, our instance analyses (namely, two partially flow-sensitive analyses and partial
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Octagon analysis) implement req via a simple dependency analysis. For instance, in our partially

flow-sensitive analysis, req(q) is just the set of all program variables in the dependency slice of P
for the query q. The result ofH (P ) is the union of all the selected parts of P .

Classifiers in the prior approaches [Cha et al. 2016; Heo et al. 2016; Oh et al. 2015] select program

parts directly, instead of first choosing queries and collecting relevant parts as in our approach. We

did not follow this common practice because it is too much tied to the specifics of program analyses

and leads to an inconvenient setting for general methods. Concretely, what should constitute

program parts in those approaches depend on the choice of a program analysis. In our approach, on

the other hand, the goal of a classifier is always to identify a subset of queries in a given program,

and facilitates the development of general methods.

5 AUTOMATIC FEATURE GENERATION
Wenow present themain contribution of this paper, our feature generation algorithm. The algorithm

first generates so called feature programs from given codebases (Section 5.1), and then converts all

the generated programs to abstract data-flow graphs (Section 5.2). The obtained graphs enable the

match procedure to transform queries to feature vectors so that a classifier can be applied to these

queries (Section 5.3). In this section, we will explain all these aspects of our feature generation

algorithm.

5.1 Generation of Feature Programs
Given a static analysis F and codebases P, gen_fp(P, F ) generates feature programs in two steps.

First, it collects the set of queries in P that can be proved by the analysis F under high precision

(i.e., F (−, 1)) but not with low precision (i.e., F (−, 0)). We call such queries positive and the other

non-positive queries negative. The negative queries are either too hard in the sense that they cannot

be proved even with high precision, or too easy in the sense that they can be proved even with low

precision. Let Ppos be the set of positive queries and their host programs:

Ppos = {(P ,q) | P ∈ P ∧ q ∈ QP ∧ ϕq (P )}

where QP is the set of queries in P and ϕq is defined by:

ϕq (P ) = (q < F (P , 0) ∧ q ∈ F (P , 1)) . (1)

Second, gen_fp(P, F ) shrinks the positive queries collected in the first step by using a program

reducer. A program reducer (e.g., C-Reduce [Regehr et al. 2012]) is a function of the type: reduce :
P × (P → B) → P. It takes a program P and a predicate pred, and removes parts of P as much

as possible while preserving the original result of the predicate. At the end, it returns a minimal

program P ′ such that pred(P ′) = pred(P ). Our procedure gen_fp(P, F ) runs a reducer and shrinks

programs in Ppos as follows:

Pfeat = {(reduce(P ,ϕq ),q) | (P ,q) ∈ Ppos}.

Pfeat is the collection of the reduced programs paired with queries. We call these programs feature
programs.2 Because of the reducer, each feature program contains only those parts related to the

reason that high precision is effective for proving its query. Intuitively, the reducer removes noise in

the positive examples (P ,q) ∈ Ppos , until the examples contain only the reasons that high precision

of the analysis helps prove their queries. The result of gen_fp(P, F ) is Pfeat .

2
We only use positive examples, because negative ones were dispensable in our experiments.
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Improvement 1: Preserving Analysis Results. A program reducer such as C-Reduce [Regehr et al.

2012] is powerful and is able to reduce C programs of thousands LOC to just a few lines of feature

programs. However, some additional care is needed in order to prevent C-Reduce from removing

too aggressively and producing trivial programs.

For example, suppose we analyze the following code snippet (excerpted and simplified from

bc-1.06) with a partially flow-sensitive interval analysis:

1 yychar = 1; yychar = input(); //external input
2 if (yychar < 0) exit(1);
3 if (yychar <= 289)
4 assert(0 <= yychar < 290); // query q
5 yychar++;

The predicate ϕq in (1) holds for this program. The analysis can prove the assertion at line 4 with

flow-sensitivity, because in that case, it computes the interval [0, 289] for yychar at line 4. But it
cannot prove the assertion with flow-insensitivity, because it computes the interval [−∞,+∞] for
yychar that holds over the entire program.

Reducing the program under the predicate ϕq may produce the following program:

yychar=1; assert(0<=yychar<290); yychar++;

It is proved by flow-sensitivity but not by flow-insensitivity. An ordinary flow-insensitive interval

analysis computes the interval [1,+∞] because of the increment of yychar at the end. Thus the
resulting program still satisfies ϕq . However, this reduced program does not contain the genuine

reason that the original program needed flow-sensitivity: in the original program, the if commands

at lines 2 and 3 are analyzed accurately only under flow-sensitivity, and the accurate analysis of

these commands is crucial for proving the assertion.

To mitigate the problem, we run the reducer with a stronger predicate that additionally requires

the preservation of analysis result. In the flow-sensitive analysis of our original program, the

variable yychar has the interval value [0, 289] at the assertion. In the above reduced program, on

the other hand, it has the value [1, 1]. The strengthened predicate ϕ ′q in this example is:

ϕ ′q (P ) = (ϕq (P ) ∧ value of yychar at q is [0, 289]). (2)

Running the reducer with this new predicate results in:

1 yychar = input();
2 if (yychar < 0) exit(1);
3 if (yychar <= 289) assert(0 <= yychar < 290);

The irrelevant commands (yychar = 1, yychar++) in the original program are removed by the

reducer, but the important if commands at lines 2 and 3 remain in the reduced program. Without

these if commands, it is impossible to satisfy the new condition (2), so that the reducer has to

preserve them in the final outcome. This idea of preserving the analysis result during reduction

was essential to generate diverse feature programs. Also, it can be applied to any program analysis

easily.

Improvement 2: Approximating Variable Initialization. Another way for guiding a reducer is

to replace commands in a program by their overapproximations and to call the reducer on the

approximated program. The rationale is that approximating commands would prevent the reducer

from accidentally identifying a reason that is too specific to a given query and does not generalize

well. Approximation would help remove such reasons, so that the reducer is more likely to find

general reasons.
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Consider the following code snippet (from spell-1.0):

1 pos = 0;
2 while (1) { if (!pos) assert(pos==0); pos++; }

The flow-sensitive interval analysis proves the assertion because it infers the interval [0, 0] for
pos. Note that this analysis result crucially relies on the condition !pos. Before the condition, the
value of pos is [0,+∞], but the condition refines the value to [0, 0]. However, reducing the program
under ϕq in (1) leads to the following program:

pos=0; assert(pos==0); pos++;

This reduced program no longer says the importance of refining an abstract value with the condition

!pos. Demanding the preservation of the analysis result does not help, because the value of pos is

also [0, 0] in the reduced program.

We fight against this undesired behavior of the reducer by approximating commands of a program

P before passing it to the reducer. Specifically, for every positive query (P ,q) and for each command

in P that initializes a variable with a constant value, we replace the constant by Top (an expression

that denotes the largest abstract value ⊤) as long as this replacement does not make the query

negative. For instance, we transform our example to the following program:

pos = Top; // 0 is replaced by Top
while (1) { if (!pos) assert(pos==0); pos++; }

Note that pos = 0 is replaced by pos = Top. Then, we apply the reducer to this transformed

program, and obtain:

pos = Top; if (!pos) assert(pos==0);

Note that the reduced program keeps the condition !pos; because of the change in the initialization

of pos, the analysis cannot prove the assertion without using the condition !pos in the original

program.

We stress that the program reduction techniques presented in this section are not analysis-specific,

and they are applicable to diverse program analyses.

5.2 Transformation to Abstract Data-Flow Graphs
Our next procedure is build_dfg(Pfeat , R̂), which converts feature programs in Pfeat to their data-

flow graphs where nodes are labeled with the abstraction of atomic commands in those programs.

We call such graphs abstract data-flow graphs. These graphs act as what people call features in
the applications of machine learning. The additional parameter R̂ to the procedure controls the

degree of abstraction of the atomic commands in these graphs. A method for finding an appropriate

parameter R̂ will be presented in Section 5.4.

Step 1: Building Data-Flow Graphs. The first step of build_dfg(Pfeat , R̂) is to build data-flow graphs

for feature programs in Pfeat and to slice these graphs with respect to queries in those programs.

The build_dfg procedure constructs and slices such data-flow graphs using standard recipes.

Assume a feature program P ∈ Pfeat represented by a control-flow graph (C, ↪→), where C is the set

of program points annotated with atomic commands and (↪→) ⊆ C × C the control-flow relation

between those program points. The data-flow graph for P reuses the node set C of the control-flow

graph, but it uses a new arc relation ;: c ; c ′ iff there is a def-use chain in P from c to c ′ on a

memory location or variable l (that is, c ↪→+ c ′, l is defined at c , l is used at c ′, and l is not re-defined
in the intermediate program points between c and c ′). For each query q in the program P , its slice
(Cq ,;q ) is just the restriction of the data-flow graph (Cq ,;q ) with respect to the nodes that may

reach the query (i.e., Cq = {c ∈ C | c ;
∗ cq }).
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R1 : c → lv := e | lv := alloc(e ) | assume(e1 ≺ e2)
R2 : e → c | e1 ⊕ e2 | lv | &lv, lv → x | ∗e | e1[e2]
R3 : ⊕ → + | − | ∗ | / |<< |>>, ≺ → < |≤|> |≥|=|,
R4 : c→ 0 | 1 | 2 | · · · , x→ x | y | z | · · ·

Fig. 2. The set R of grammar rules for C-like languages

Step 2: Abstracting Atomic Commands. The second step of build_dfg(Pfeat , R̂) is to abstract atomic

commands in the data-flow graphs obtained in the first step and to collapse nodes labeled with

the same abstract command. This abstraction is directed by the parameter R̂, and forms the most

interesting part of the build_dfg procedure.
Our abstraction works on the grammar for the atomic commands shown in Figure 2. The

command lv := e assigns the value of e into the location of lv , and lv := alloc(e ) allocates an array

of size e . The assume command assume(e1 ≺ e2) allows the program to continue only when the

condition evaluates to true. An expression may be a constant integer (c), a binary operator (e1 ⊕ e2),
an l-value expression (lv), or an address-of expression (&lv). An l-value may be a variable (x), a
pointer dereference (∗e), or an array access (e1[e2]).

Let R be the set of grammar rules in Figure 2. The second parameter R̂ of build_dfg(Pfeat , R̂) is a
subset of R. It specifies how each atomic command should be abstracted. Intuitively, each rule in R̂
says that if a part of an atomic command matches the RHS of the rule, it should be represented

abstractly by the nonterminal symbol in the LHS of the rule. For example, when R̂ = {⊕ → + | −},
both x = y + 1 and x = y − 1 are represented abstractly by the same x = y ⊕ 1, where + and − are

replaced by ⊕. Formally, build_dfg(Pfeat , R̂) transforms the parse tree of each atomic command in

Pfeat by repeatedly applying the grammar rules in R̂ backwards to the tree until a fixed point is

reached. This transformation loses information about the original atomic command, such as the

name of a binary operator. We denote it by a function αR̂ . The following example illustrates this

transformation using a simplified version of our grammar.

Example 5.1. Consider the grammar: R = {e → x | c | e1 ⊕ e2, x→ x | y, c→ 1 | 2, ⊕ →

+ | −}. Let R̂ = {x→ x | y, c→ 1 | 2, ⊕ → + | −}. Intuitively, R̂ specifies that we should abstract

variables, constants, and operators in atomic commands and expressions by nonterminals x, c, and
⊕, respectively. The abstraction is done by applying rules R̂ backwards to parse trees until none of

the rules becomes applicable. For example, the expression x + 1 is abstracted into x ⊕ c as follows:

e

e

x

x

⊕

+

e

c

1

⇒

e

e

x

⊕

+

e

c

1

⇒

e

e

x

⊕ e

c

1

⇒

e

e

x

⊕ e

c

We first apply the rule x→ x backwards to the parse tree (leftmost) and collapse the leaf node x
with its parent. Next, we apply ⊕ → + where + is collapsed to ⊕. Finally, we apply the rule c→ 1,

getting the rightmost tree. The result is read off from the last tree, and is the abstract expression

x ⊕ c. Similarly, y − 2 gets abstracted to x ⊕ c. □

For each data-flow slice computed in the first step, our build_dfg(Pfeat , R̂) procedure applies the
αR̂ function to the atomic commands in the slice. Then, it merges nodes in the slice to a single
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node if they have the same label (i.e., the same abstract atomic command). The nodes after merging

inherit the arcs from the original slice. We call the resulting graphs abstract data-flow graphs. These
graphs describe (syntactic and semantic) program properties, such as the ones used in [Oh et al.

2015]. For example, the abstract data-flow graph (x ≺ c) ; (x := alloc(x)) says that a program
variable is compared with a constant expression before being used as an argument of a memory

allocator (which corresponds to the features #9 and #11 for selective flow-sensitivity in [Oh et al.

2015]).

We write {π1, . . . ,πk } for the abstract data-flow graphs generated by build_dfg(Pfeat , R̂). We

sometimes call πi feature, especially when we want to emphasize its role in our application of

machine learning techniques.

We point out that the performance of a data-driven analysis in our approach depends on the

choice of the parameter R̂ to the build_dfg(Pfeat , R̂) procedure. For example, the Octagon analysis

can track certain binary operators such as addition precisely but not other binary operators such

as multiplication and shift. Thus, in this case, we need to use R̂ that at least differentiates these two

kinds of operators. In Section 5.4, we describe a method for automatically choosing R̂ from data via

iterative cross validation.

5.3 Abstract Data-flow Graphs andQueries
Abstract data-flow graphs encode properties about queries. These properties are checked by our

matchR̂ procedure parameterized by R̂. The procedure takes an abstract data-flow graph π , a
query q and a program P that contains the query. Given such inputs, it works in four steps. First,

matchR̂ (π ,q, P ) normalizes P syntactically so that some syntactically different yet semantically

same programs become identical. Specifically, the procedure eliminates temporary variables (e.g.,

convert tmp = b + 1; a = tmp; to a = b + 1), removes double negations (e.g., convert

assume (!(!(x==1))) to assume (x==1)), and makes explicit conditional expressions (e.g., con-

vert assume(x) to assume(x!=0)). Second, matchR̂ (π ,q, P ) constructs a data-flow graph of P , and
computes the slice of the graph that may reach q. Third, it builds an abstract data-flow graph from

this slice. That is, it abstracts the atomic commands in the slice, merges nodes in the slice that are

labeled with the same (abstract) atomic command, and induces arcs between nodes after merging

in the standard way. Let (Nq ,;q ) be the resulting abstract data-flow graph, and (N0,;0) the node
and arc sets of π . In both cases, nodes are identified with their labels, so that Nq and N0 are the sets

of (abstract) atomic commands. Finally, matchR̂ (π ,q, P ) returns 0 or 1 according to the criterion:

matchR̂ (π ,q, P ) = 1 ⇐⇒ N0 ⊆ Nq ∧ (;0) ⊆ (;∗q ). The criterion means that the checking of

our procedure succeeds if all the atomic commands in N0 appear in Nq and their dependencies

encoded in;0 are respected by the transitive dependencies;∗q in the query. Taking the transitive

closure (;∗q ) here is important. It enables matchR̂ (π ,q, P ) to detect whether the programming

pattern encoded in π appears somewhere in the program slice for q, even when the slice contains

commands not related to the pattern.

5.4 Final Algorithm
Algorithm 1 shows the final algorithm for feature generation. We first split our codebase P into

three disjoint sets: a training set Ptr = {P1, . . . , Pr }, a validation set Pva = {Pr+1, . . . , Ps }, and a

test set Pte = {Ps+1, . . . , Pn }. In our experiments, we set s to the nearest integer to 0.7n, and r the
nearest integer to 0.7s . Pte only serves as new data when we evaluate the final, learned heuristic.

The algorithm takes Ptr = {P1, . . . , Pr }, Pva = {Pr+1, . . . , Ps }, F (Section 3), and a set R of grammar

rules for the target programming language. Then, it returns the set Π of features.
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Algorithm 1 Automatic Feature Generation

Input: training set Ptr , validation set Pva, static analysis F , grammar rules R
Output: a set of features Π
1: Pfeat ← gen_fp(Ptr , F ) ▷ generate feature programs

2: sbest ,Πbest ← −1, ∅
3: repeat
4: R̂ ← choose a subset of R (i.e., R̂ ⊆ R)
5: Π ← build_dfg(Pfeat , R̂) ▷ Build data-flow graphs

6: HC ← learn(F ,Π, Ptr )
7: s ← evaluate(F ,C, Pva) ▷ Evaluate F1-score of C
8: if s > sbest then
9: sbest ,Πbest ← s,Π
10: end if
11: until timeout

12: return Πbest

The algorithm begins by calling gen_fp with Ptr and the static analysis, so as to generate feature

programs. Next, it initializes the score sbest to −1, and the set of features Πbest to the empty set.

At lines 3–11, the algorithm repeatedly improves Πbest until it hits the limit of the given time

budget. Recall that the performance of our approach depends on a set R̂ of grammar rules, which

determines how much atomic commands get abstracted. In each iteration of the loop, the algorithm

chooses R̂ ⊆ R according to the strategy that we will explain shortly, and calls build_dfg(Pfeat , R̂)
to generate a new candidate set of features Π. Then, using this candidate set, the algorithm invokes

an off-the-shelf learning algorithm (line 6) for learning an analysis heuristicHC from the training

data Ptr ; the subscript C denotes a classifier built by the learning algorithm. The quality of the

learned heuristic is evaluated on the validation set Pva (line 7) by computing the F1-score
3
of C. If

this evaluation gives a better score than the current best sbest , the set Π becomes a new current best

Πbest (lines 8–9). To save computation, before running our algorithm, we run the static analysis F
for all programs in the codebases P with highest precision 1 and again with lowest precision 0, and
record the results as labels for all queries in P. This preprocessing lets us avoid calling F in learn
and evaluate. As a result, after feature programs Pfeat are computed at line 1, building data-flow

graphs and learning/evaluating the heuristic do not invoke the static analysis, so that each iteration

of the loop in Algorithm 1 runs fast: in our experiments, each iteration took 244 seconds on average

for the interval analysis.

Our algorithm chooses a subset R̂ ⊆ R of grammar rules using a greedy bottom-up search. It

partitions the grammar rules in Figure 2 into four groups R = R1⊎R2⊎R3⊎R4 such that R1 contains

the rules for the nonterminal c for commands, R2 those for the nonterminals e, lv for expressions,

R3 the rules for the nonterminals ⊕,≺ for operators, and R4 those for the remaining nonterminals

x, c for variables and constants. These sets form a hierarchy with Ri above Ri+1 for i ∈ {1, 2, 3}
in the following sense: for a typical derivation tree of the grammar, an instance of a rule in Ri
usually appears nearer to the root of the tree than that of a rule in Ri+1. Algorithm 1 begins by

choosing a subset of R3 randomly and setting the current rule set R̂ to the union of this subset and

R4. Including the rules in R4 has the effect of making the generated features (i.e., abstract data-flow

graphs) forget variable names and constants that are specific to programs in the training set, so that

they generalize well across different programs. This random choice is repeated for a fixed number

3
2 · precision · recall/(precision + recall).
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of times (without choosing previously chosen abstractions), and the best R̂3 in terms of its score

s is recorded. Then, Algorithm 1 similarly tries different randomly-chosen subsets of R2 but this

time using the best R̂3 found, instead of R4, as the set of default rules to include. The best choice R̂2

is again recorded. Repeating this process with R1 and the best R̂2 gives the final result R̂1, which

leads to the result of Algorithm 1.

6 INSTANCE ANALYSES
We have applied our feature-generation algorithm to three parametric program analyses: partially

flow-sensitive interval and pointer analyses, and a partial Octagon analysis. These analyses are

designed following the data-driven approach of Section 4, so they are equipped with engines for

learning analysis heuristics from given codebases. Our algorithm generates features required by

these learning engines.

In this section, we describe the instance analyses. In these analyses, a program is given by its

control-flow graph (C, ↪→), where each program point c ∈ C is associated with an atomic command

in Figure 2. We assume heap abstraction based on allocation sites and the existence of a variable for

each site in a program. This lets us treat dynamically allocated memory cells simply as variables.

Two Partially Flow-sensitive Analyses. Weuse partially flow-sensitive interval and pointer analyses

that are designed according to the recipe in [Oh et al. 2015]. These analyses perform the sparse

analysis [Blackshear et al. 2015; Farzan and Kincaid 2012; Madsen and Møller 2014; Oh et al. 2012]

in the sense that they work on data-flow graphs. Their flow-sensitivity is controlled by a chosen

set of program variables; only the variables in the set are analyzed flow-sensitively. In terms of the

terminologies of Section 3, the set of program components J is that of variables Var, an analysis

parameter a ∈ A = {0, 1}J specifies a subset of Var.
Both interval and pointer analyses define functions F : P×A → ℘(Q) that take a program and a

set of variables and return proved queries in the program. They compute mappings D ∈ D = C→ S
from program points to abstract states, where an abstract state s ∈ S itself is a map from program

variables to values, i.e., S = Var→ V. In the interval analysis, V consists of intervals, and in the

pointer analysis, V consists of sets of the addresses of program variables.

Given an analysis parameter a, the analyses compute the mappings D ∈ D as follows. First, they

construct a data-flow graph for variables in a. For each program point c ∈ C, let D(c ) ⊆ Var and
U(c ) ⊆ Var be the definition and use sets. Using these sets, the analyses construct a data-flow

relation (⇝a) ⊆ C×Var×C: c0
x
⇝a cn holds if there exists a path [c0, c1, . . . , cn] in the control-flow

graph such that x is defined at c0 (i.e., x ∈ D(c0)) and used at cn (i.e., x ∈ U(cn )), but it is not
re-defined at any of the intermediate points ci , and the variable x is included in the parameter a.
Second, the analyses perform flow-insensitive analyses on the given program, and store the results

in sI ∈ S. Finally, they compute fixed points of the function Fa (D) = λc . fc (s
′) where fc is a transfer

function at a program point c , and the abstract state s ′ is the following combination of D and sI
at c: s ′(x ) = sI (x ), for x < a and for x ∈ a, s ′(x ) =

⊔
c0

x
⇝ac

D (c0) (x ). Note that for variables not

in a, Fa treats them flow-insensitively by using sI . When a = Var, the analyses become ordinary

flow-sensitive analyses, and when a = ∅, they are just flow-insensitive analyses.

Partial Octagon Analysis. We use the partial Octagon analysis formulated in [Heo et al. 2016].

Letm be the number of variables in the program, and write Var = {x1, . . . ,xm }. The set of program
components J is Var × Var, so an analysis parameter a ∈ A = {0, 1}J consists of pairs of program
variables. Intuitively, a specifies which two variables should be tracked together by the analysis.

Given such a, the analysis defines the smallest partition Γ of variables such that every (x ,y) ∈ a
is in the same partition of Γ. Then, it defines a grouped Octagon domain OΓ =

∏
γ ∈Γ Oγ where
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Oγ is the usual Octagon domain for the variables in the partition γ . The abstract domain of the

analysis is C→ OΓ , the collection of maps from program points to grouped Octagons. The analysis

performs fixed-point computation on this domain using adjusted transfer functions of the standard

Octagon analysis. The details can be found in [Heo et al. 2016].

We have to adjust the learning engine and our feature-generation algorithm for this partial

Octagon slightly. This is because the full Octagon analysis on a program P (that is, F (P , 1)) does not
work usually when the size of P is large (≥20KLOC in our experiments). Whenever the learning

part in Section 4 and our feature-generation algorithm have to run F (P , 1) originally, we run the

impact pre-analysis in [Heo et al. 2016] instead. This pre-analysis is a fully relational analysis that

works on a simpler abstract domain than the full Octagon, and estimates the behavior of the full

Octagon; it defines a function F ♯
: P→ ℘(Q), which takes a program and returns a set of queries in

the program that are likely to be verified by the full Octagon. Formally, we replaced the predicate ϕ

in Section 5.1 by ϕq (P ) =
(
q < F (P , 0) ∧ q ∈ F ♯ (P )

)
.

7 EXPERIMENTS
We evaluated our feature-generation algorithm with the instance analyses in Section 6. We used the

interval and Octagon analyses for proving the absence of buffer overruns, and the pointer analysis

the absence of null dereferences.

7.1 Setting
The three analyses are implemented on top of the Sparrow framework for the C programming

language.
4
The framework provides a baseline analysis that uses heap abstraction based on alloca-

tion sites and array smashing, is field-sensitive but context-insensitive, and performs the sparse

analysis [Blackshear et al. 2015; Farzan and Kincaid 2012; Madsen and Møller 2014; Oh et al. 2012].

We extended this baseline analysis to implement the three analyses. Our pointer analysis uses

Andersen’s algorithm [Andersen 1994]. The Octagon analysis is implemented by using the OptOc-

tagons [Singh et al. 2015] and Apron [Jeannet and Miné 2009] libraries. Our implementation of

the feature-generation algorithm in Section 5 and the learning part in Section 4 is shared by the

three analyses except that the analyses use slight variants of the req function in Section 4, which

converts a query to program components. In all three analyses, req first computes a dependency

slice of a program for a given query. Then, it collects program variables in the slice for the interval

and pointer analyses, and pairs of all program variables in the slice for the Octagon analysis.

The computation of the dependency slice is approximate in that it estimates dependency using

a flow-insensitive pointer analysis and ignores atomic commands too far away from the query

when the size of the slice goes beyond a threshold.
5
This approximation ensures that the cost of

computing req is significantly lower than that of the main analyses. We use the same dependency

analysis in match. Our implementation uses C-Reduce [Regehr et al. 2012] for generating feature

programs and a decision tree algorithm [Pedregosa et al. 2011] for learning a classifier for queries.

Our evaluation aims at answering four questions:

• Effectiveness: Does our feature-generation algorithm enable the learning of good analysis

heuristics?

• Comparison with manually-crafted features: How does our approach of learning with

automatically-generated features compare with the existing approaches of learning with

manually-crafted features?

4
https://github.com/ropas/sparrow

5
In our implementation, going beyond a threshold means having more than 200 program variables.
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Table 1. Effectiveness of partially flow-sensitive interval analysis.Quality: Prove = (c −a)/(b −a), Cost = e/d

Query Prediction #Proved Queries Analysis Cost (sec) Quality [Oh et al. 2015]

Trial Precision Recall FIi (a) FSi (b) Ours (c) FIi (d) FSi Ours (e) Prove Cost Prove Cost

1 71.5 % 78.9 % 6,537 7,126 7,019 26.7 569.0 52.0 81.8 % 1.9x 56.6 % 2.0x

2 60.9 % 75.1 % 4,127 4,544 4,487 58.3 654.2 79.9 86.3 % 1.4x 49.2 % 2.4x

3 78.3 % 74.0 % 6,701 7,532 7,337 50.9 6,175.2 167.5 76.5 % 3.3x 51.1 % 3.4x

4 73.0 % 76.2 % 4,399 4,956 4,859 36.9 385.1 44.9 82.6 % 1.2x 54.8 % 1.2x

5 83.2 % 75.4 % 5,676 6,277 6,140 31.7 1,740.3 61.6 77.2 % 1.9x 65.6 % 1.8x

TOTAL 74.5 % 75.8 % 27,440 30,435 29,842 204.9 9,523.9 406.1 80.2 % 2.0x 55.1 % 2.3x

Table 2. Effectiveness of partially flow-sensitive pointer analysis

Query Prediction #Proved Queries Analysis Cost (sec) Quality

Trial Precision Recall FIp FSp Ours FIp FSp Ours Prove Cost

1 79.2 % 76.8 % 4,399 6,346 6,032 48.3 3,705.0 150.0 83.9 % 3.1x

2 78.3 % 77.2 % 7,029 8,650 8,436 48.9 651.4 74.0 86.8 % 1.5x

3 74.6 % 75.0 % 8,781 10,352 10,000 41.5 707.0 59.4 77.6 % 1.4x

4 73.9 % 76.0 % 10,559 12,914 12,326 51.1 4,107.0 164.3 75.0 % 3.2x

5 78.0 % 82.5 % 4,205 5,705 5,482 23.0 847.2 56.7 85.1 % 2.5x

TOTAL 76.7 % 77.4 % 34,973 43,967 42,276 212.9 10,017.8 504.6 81.2 % 2.4x

Table 3. Effectiveness of partial Octagon analysis

Query Prediction #Proved Queries Analysis Cost (sec) Quality [Heo et al. 2016]

Trial Precision Recall FSi IMPCT Ours FSi IMPCT Ours Prove Cost Prove Cost

1 74.8 % 81.3 % 3,678 3,806 3,789 140.7 389.8 230.5 86.7 % 1.6 x 100.0 % 3.0 x

2 84.1 % 82.6 % 5,845 6,004 5,977 613.5 18,022.9 782.9 83.0 % 1.3 x 94.3 % 1.8 x

3 82.8 % 73.0 % 1,926 2,079 2,036 315.2 2,396.9 416.0 71.9 % 1.3 x 92.2 % 1.1 x

4 77.6 % 85.2 % 2,221 2,335 2,313 72.7 495.1 119.9 80.7 % 1.6 x 100.0 % 2.0 x

5 71.6 % 78.4 % 2,886 2,962 2,944 148.9 557.2 209.7 76.3 % 1.4 x 96.1 % 2.3 x

TOTAL 79.0 % 79.9 % 16,556 17,186 17,067 1,291.0 21,861.9 1,759.0 81.1 % 1.4 x 96.2 % 1.8 x

• Impact of reducing and learning: Does reducing a program really help for generating

good features? Given a set of features, does learning lead to a classifier better than a simple

(disjunctive) pattern matcher?

• Generated features: Does our feature-generation algorithm produce informative features?

7.2 Effectiveness
We compared the performance of our three instance analyses with their standard counterparts:

• Flow-insensitive(FIi) & -sensitive(FSi) interval analyses

• Flow-insensitive(FIp) & -sensitive(FSp) pointer analyses

• Flow-sensitive interval analysis (FSi) and partial Octagon analysis by impact pre-analysis

(IMPCT) [Oh et al. 2014].

We did not include the Octagon analysis [Miné 2006] in the list, because the analysis did not scale

to medium-to-large programs in our benchmark set.

In experiments, we used 60 programs
6
(ranging 0.4–109.6 KLOC) collected from Linux and GNU

packages. To evaluate the performance of learned heuristics for the interval and pointer analyses, we

randomly partitioned the 60 programs into 42 programs for building a heuristic and 18 test programs

for evaluating the quality of the learned heuristic. We further split the 42 programs randomly

6
The list of programs is available in the appendix.
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into 30 training programs (for feature generation and learning)
7
and 12 validation programs (for

evaluating the quality of generated features). For the Octagon analysis, we used only 25 programs

out of 60 because for some programs, Octagon and the interval analysis prove the same set of

queries. We selected these 25 by running the impact pre-analysis [Heo et al. 2016] for the Octagon

on all the 60 programs and choosing the ones that may benefit from Octagon according to the

results of this pre-analysis. We randomly partitioned the 25 programs into 17 programs and 8 test

programs. We split the 17 programs into 12 training programs (for feature generation and learning)

and 5 validation programs (for evaluating the quality of generated features). A heuristic was learned

using the 17 programs and used for analyzing the 8 test programs. We repeated this procedure for

five times with different partitions of the whole program sets. In our experiments, C-Reduce took

0.5–24 minutes to generate a feature program from a query. The average numbers of nodes in the

learned decision trees were 40.6 (interval), 86.8 (pointer), and 111.4 (Octagon). All experiments

were done on a Ubuntu machine with Intel Xeon cpu (2.4GHz) and 192GB of memory.

Table 1 shows the performance of the learned heuristics on the test programs for the interval

analysis. The learned classifier for queries (Section 4) was able to select 75.8% of FS-provable but

FI-unprovable queries on average (i.e., 75.8% recall) and 74.5% of the selected queries were actually

proved under FS only (i.e., 74.5% precision). With the analysis heuristic on top of this classifier, our

partially flow-sensitive analysis could prove 80.2% of queries that require flow-sensitivity while

increasing the time of the flow-insensitive analysis by 2.0x on average. We got 80.2 (higher than
75.8) because the analysis parameter is the set of all the program components for queries selected by

the classifier and this parameter may make the analysis prove queries not selected by the classifier.

The fully flow-sensitive analysis increased the analysis time by 46.5x. We got similar results for the

other two analyses (Tables 2 and 3).

7.3 Comparison with Manually-Crafted Features
We compared our approach with those by Oh et al. [2015] and Heo et al. [2016], which learn

analysis heuristics using manually-crafted features. The last two columns of Table 1 present the

performance of the partially flow-sensitive interval analysis in [Oh et al. 2015], and those of Table 3

the performance of the partial Octagon analysis in [Heo et al. 2016].

The five trials in the tables use the splits of programs for heuristic learning and test in the

corresponding entries of Tables 1 and 3.
8
Our implementation of Oh et al.’s approach used their 45

manually-crafted features, and applied their Bayesian optimization algorithm to our benchmark

programs. Their approach requires the choice of a threshold value k , which determines how many

variables should be treated flow-sensitively. For each trial and each program in that trial, we set k to

the number of variables selected by our approach, so that both approaches induce similar overhead

in analysis time. Our implementation of Heo et al.’s approach used their 30 manually-crafted

features, and applied their supervised learning algorithm to our benchmark programs.

The overall results show that our approach consistently performs well, while the manual ap-

proaches show a wide variation in their performances. For all instance analyses, our approach

proved more than 80% of provable queries. On the other hand, existing approaches with manually-

designed features produced mixed results. While the Octagon analysis with manual features proved

96.2% of the queries, the interval analysis managed to prove 55.1% on average. Note that direct

comparison with existing manual approaches is difficult, as granularity of feature descriptions

(query-based vs. program-parts-based) and learning algorithms (e.g., decision tree learning vs.

7
We followed the practice used in representation learning [Bengio et al. 2013], where both feature generation and learning

are done with the same dataset.

8
Because prior works do not have training/validation splits, the training programs in this case include our training and

validation sets.
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Bayesian optimization) are different. We warn readers that the comparisons in this section are

end-to-end, and it is hard to draw a clear conclusion.

7.4 Impact of Reducing and Learning
In order to see the role of a reducer in our approach, we generated feature programs without calling

the reducer in our experiment with the interval analysis. These unreduced feature programs were

then converted to abstract data-flow graphs or features, which enabled the learning of a classifier

for queries. The generated features were too specific to training programs, and the learned classifier

did not generalize well to unseen test programs; removing a reducer dropped the average recall of

the classifier from 75.8% to 58.2% for test programs.

In our approach, a feature is a reduced and abstracted program slice that illustrates when high

precision of an analysis is useful for proving a query. Thus, one natural approach is to use the

disjunction of all features as a classifier for queries. Intuitively, this classifier attempts to pattern-

match each of these features against a given program and a query, and it returns true if some

attempt succeeds. We ran our experiment on the interval analysis with this disjunctive classifier,

instead of the original decision tree learned from training programs. This change of the classifier

increased the recall from 75.8% to 79.7%, but dropped the precision significantly from 74.5% to

10.4%. The result shows the benefit of going beyond the simple disjunction of features and using

a more sophisticated boolean combination of them (as encoded by a decision tree). One possible

explanation is that the matching of multiple features suggests the high complexity of a given

program, which typically makes the analysis lose much information even under the high-precision

setting.

7.5 Generated Features
The average numbers of generated features (i.e., abstract data-flow graphs) over the five trials

were 38 (interval), 45 (pointer), and 44 (Octagon). We ranked the features according to their Gini

scores [Breiman 2001] in the learned decision tree, which measure the importance of these features

for prediction. For each instance analysis, we show two features that rank consistently high in

the five trials of experiments. For readability, we present them in terms of their feature programs,

rather than as abstract data-flow graphs.

The top-two feature programs for the interval analysis and the pointer analysis are:

// Feature Program 1 for Interval
int buf[10];
for (i=0;i<7;i++) { buf[i]=0; /* Query */ }

// Feature Program 2 for Interval
i=255; p=malloc(i);
while (i>0) { *(p+i)=0; /* Query */ i--; }

// Feature Program 1 for Pointer
i=128; p=malloc(i);
if (p==0) return; else *p=0; /* Query */

// Feature Program 2 for Pointer
p=malloc(i); p=&a; *p=0; /* Query */

The feature programs for the interval analysis describe cases where a consecutive memory region

is accessed in a loop through increasing or decreasing indices and these indices are bounded by

a constant from above or from below because of a loop condition. The programs for the pointer

analysis capture cases where the safety of pointer dereference is guaranteed by null check or

preceding strong update. All of these programs are typical showcases of flow-sensitivity.
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The top-two feature programs for the partial Octagon analysis are:

// Feature Program 1 for Octagon
size=POS_NUM; arr=malloc(size);
arr[size-1]=0; /* Query */

// Feature Program 2 for Octagon
size=POS_NUM; arr=malloc(size);
for(i=0;i<size;i++){ arr[i]=0; /* Query */ }

These feature programs allocate an array of a positive size and access the array using an index that

is related to this size in a simple linear way. They correspond to our expectation about when the

Octagon analysis is more effective than the interval analysis.

We observed similarities from findings about the important features in the existing approaches

and our work. For example, features #19 (incremented by one), #32 (modified inside a local loop),

and #28 (used as an array index) in the previous work by Oh et al. [2015] appear frequently as the

top 10 features for flow-sensitivity in their paper (Figure 4). In fact, the three atomic features are

major ingredients for encoding the first feature program for the interval analysis that we report in

this section.

When converting feature programs to abstract data-flow graphs, our approach automatically

identifies the right abstraction level of commands for each instance analysis (Algorithm 1). In the

interval analysis, the abstraction found by our approach was to merge the comparison operators

(e.g., <, ≤, >, ≥) but to differentiate all the arithmetic operators (e.g., +, −, ∗). This is because, in

the interval analysis, comparison with constants is generally a good signal for improving precision

regardless of a specific comparison operator used, but the analysis behaves differently when

analyzing different commands involving + or −. With other abstractions, we obtained inferior

performance; for example, whenwe differentiate comparison operators and abstract away arithmetic

operators, the recall was dropped from 75.8% to 54.6%. In the pointer analysis, the best abstraction

was to merge all arithmetic and comparison operators while differentiating equality operators

(=,,). In the Octagon analysis, our approach identified an abstraction that merges all comparison

and binary operators while differentiating addition/subtraction operators from them. Formally, the

learned abstractions are R̂interval = {≺ → < | ≤ | > | ≥} ∪ R4, R̂pointer = {≺ → < | ≤ | > | ≥

, ⊕ → + | − | ∗ | /}∪R4, and R̂octaдon = {≺ → < | ≤ | > | ≥ | = | ,, ⊕ → ∗ | / | << | >>}∪R4.

A natural question at this point is: how do features in our approach compare to those in prior

work in terms of expressiveness? Our representation of features as abstract data-flow graphs

is expressive enough to encompass most of the manually designed features in [Oh et al. 2015]

and [Heo et al. 2016]. For example, our approach can represent 31 among the 33 atomic features

for flow-sensitivity in [Oh et al. 2015]. This does not mean that our method generates all useful
features; some semantic features (e.g., #29 in [Heo et al. 2016]) and properties of constants (e.g., #13

in [Cha et al. 2016]) cannot be expressed by abstract programs.

7.6 Caveats and Limitations
Although the high-level idea of our approach (namely, using a program reducer to extract code

snippets useful for prediction and generalizing those snippets) can be tried to other ways of

controlling the precision of program analysis, this does not mean that our approach would lead to

an effective solution for all those ways; our positive experimental results are limited to just two,

one for controlling flow-sensitivity and the other for the degree of relational analysis. In particular,

our current approach has the following limitations:

• First, because we approximately generate data dependency (in req and match) within a

threshold, we cannot apply our approach to instances that require computing long dependency
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chains, e.g., context-sensitive analysis. We found that computing dependency slices of queries

beyond procedure boundaries efficiently with enough precision is hard to achieve in practice.

• Second, our method is not directly applicable to program analyses for other programming

languages (e.g., object-oriented or functional languages), as we assume that a powerful

program reducer and a method for building data-flow graphs efficiently exist for the target

language, which does not hold for, e.g., JavaScript.

8 RELATEDWORK AND DISCUSSION
Parametric Static Analysis. In the past decade, a large amount of research in static analysis

has been devoted for developing an effective heuristic for finding a good abstraction. Several

effective techniques based on counterexample-guided abstraction refinement (CEGAR) [Ball and

Rajamani 2002; Clarke et al. 2003; Grebenshchikov et al. 2012; Gulavani et al. 2008; Henzinger et al.

2004; Zhang et al. 2014, 2013] have been developed, which iteratively refine the abstraction based

on the feedback from the previous runs. Other techniques choose an abstraction using dynamic

analyses [Gupta et al. 2013; Naik et al. 2012] or pre-analyses [Oh et al. 2014; Smaragdakis et al. 2014].

Or they simply use a good manually-designed heuristic, such as the one for controlling the object

sensitivity for Java programs [Kastrinis and Smaragdakis 2013]. In all of these techniques, heuristics

for choosing an abstraction cannot automatically extract information from one group of programs,

and generalize and apply it to another group of programs. This cross-program generalization in

those techniques is, in a sense, done manually by analysis designers.

Data-Driven Program Analysis. Recently, researchers have proposed new techniques for finding

effective heuristics automatically rather than manually [Cha et al. 2016; Grigore and Yang 2016;

Heo et al. 2016; Jeong et al. 2017; Oh et al. 2015]. In these techniques, heuristics themselves are

parameterized by hyperparameters, and an effective hyperparameter is learned from existing

codebases by machine learning algorithms, such as Bayesian optimization [Oh et al. 2015], decision

tree learning [Heo et al. 2016], and boolean formula learning [Jeong et al. 2017]. In [Grigore and

Yang 2016], a learned hyperparameter determines a probabilistic model, which is then used to guide

an abstraction-refinement algorithm.

Our work improves these recent techniques by addressing the important issue of feature en-

gineering. The current learning-based techniques assume well-designed features, and leave the

obligation of discharging this nontrivial assumption to analysis designers [Cha et al. 2016; Heo et al.

2016; Jeong et al. 2017; Oh et al. 2015]. An exception is [Grigore and Yang 2016], but the technique

there applies only to a specific class of program analyses written in Datalog. In particular, it does

not apply to the analyses with infinite abstract domains, such as interval and Octagon analyses.

Our work provides a new automatic way of discharging the assumption of features design. Our

approach is applicable to a wide class of program analyses, because it uses program analysis as a

black box and generates features (i.e., abstracted small programs) that are not tied to the internals

of the analysis. In [Jeong et al. 2017], composite features, namely boolean combinations of atomic

features, are automatically generated by their learning algorithm, but the atomic features should

be designed manually. In principle, our technique could be applied to generate the atomic features,

but doing so needs to address nontrivial issues. For example, as we described in Section 7.6, our

approach might not be directly applicable to context-sensitive analysis for Java.

Other Applications of Machine Learning in Program Analysis. Recently machine learning tech-

niques have been applied for addressing challenging problems in program analysis. They have been

used for generating candidate invariants from data collected from testing [Garg et al. 2014, 2016;

Nori and Sharma 2013; Sharma et al. 2013, 2012], for discovering intended behaviors of programs

(e.g., preconditions of functions, API usages, types, and informative variable names) [Allamanis
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et al. 2015; Beckman and Nori 2011; Gehr et al. 2015; Katz et al. 2016; Kulkarni et al. 2016; Livshits

et al. 2009; Mishne et al. 2012; Padhi et al. 2016; Raychev et al. 2015; Sankaranarayanan et al. 2008;

Zhu et al. 2015, 2016], for finding semantically similar pieces of code [David et al. 2016], and for

synthesizing programs (e.g., code completion and patch generation) [Allamanis et al. 2016; Bielik

et al. 2016; Hindle et al. 2012; Long and Rinard 2016; Raychev et al. 2016, 2014]. Note that the

problems solved by these applications are different from ours, which is to learn good analysis

heuristics from existing codebases and to generate good features that enable such learning.

Note that use of machine learning techniques introduces non-determinism in static analysis:

removing false alarms (e.g., by changing the given program) might become harder. Addressing this

challenge is another good research problem, which is orthogonal to the results in our paper. Adding

a mechanism for user feedback [Mangal et al. 2015] and further adjusting the learned heuristics

online might help solve this problem.

Feature Learning in Machine Learning. Our work can be seen as a feature learning technique

specialized to the program-analysis application. Automating the feature-design process has been

one of the holy grails in the machine learning community, and a large body of research has

been done under the name of representation learning or feature learning [Bengio et al. 2013].

Deep learning [LeCun et al. 2015] is perhaps the most successful feature-learning method, which

simultaneously learns features and classifiers through multiple layers of representations. It has

been recently applied to programming tasks, e.g. [Allamanis et al. 2016]. A natural question is,

thus, whether deep learning can be used to learn program analysis heuristics as well. In fact, we

trained a character-level convolutional network in [Zhang et al. 2015] for predicting the need for

flow-sensitivity in interval analysis. We represented each query by the 300 characters around the

query in the program text, and used pairs of character-represented query and its provability as

training data. We tried a variety of settings (varying, e.g., #layers, width, #kernels, kernel size,

activation functions, #output units, etc) of the network, but the best performance we could achieve

was 93% of recall with disappointing 27% of precision on test data. Achieving these numbers was

highly nontrivial, and we could not find intuitive explanation about why a particular setting of

the network leads to better results than others. We think that going beyond 93% recall and 27%

precision in this application is challenging and requires expertise in deep learning.

9 CONCLUSION
We have presented an algorithm that mines existing codebases and generates features for a data-

driven parametric static analysis. The generated features enable the learning of an analysis heuristic

from the codebases, which decides whether each part of a given program should be analyzed under

high precision or under low precision. The key ideas behind the algorithm are to use abstracted

code snippets as features, and to generate such snippets using a program reducer. We applied the

algorithm to partially flow-sensitive interval and pointer analyses, and partial Octagon analysis.

Our experiments with these analyses and 60 programs from Linux and GNU packages show that

the analyses with automatically-generated features are cost-effective and consistently perform well

on a wide range of programs.

Designing a good set of features is a nontrivial and costly step in most applications of machine

learning techniques. We hope that our algorithm and its key ideas for automating this feature design

for data-driven program analyses help attack the feature engineering problem in the ever-growing

applications of machine learning for program analysis, verification, and other programming tasks.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 101. Publication date: October 2017.



101:22 Kwonsoo Chae, Hakjoo Oh, Kihong Heo, and Hongseok Yang

Table 4. 60 benchmark programs for our partially flow-sensitive interval and pointer analyses.

Programs LOC Programs LOC

brutefir-1.0f 398 mpage-2.5.6 14,827

consol_calculator 1,124 bc-1.06 16,528

dtmfdial-0.2+1 1,440 ample-0.5.7 17,098

id3-0.15 1,652 irmp3-ncurses-0.5.3.1 17,195

polymorph-0.4.0 1,764 tnef-1.4.6 18,172

unhtml-2.3.9 2,057 ecasound2.2-2.7.0 18,236

spell-1.0 2,284 gzip-1.2.4a 18,364

mp3rename-0.6 2,466 unrtf-0.19.3 19,019

mp3wrap-0.5 2,752 jwhois-3.0.1 19,375

ncompress-4.2.4 2,840 archimedes 19,552

pgdbf-0.5.0 3,135 aewan-1.0.01 28,667

mcf-spec2000 3,407 tar-1.13 30,154

acpi-1.4 3,814 normalize-audio-0.7.7 30,984

unsort-1.1.2 4,290 less-382 31,623

checkmp3-1.98 4,450 tmndec-3.2.0 31,890

cam-1.05 5,459 gbsplay-0.0.91 34,002

bottlerocket-0.05b3 5,509 flake-0.11 35,951

129.compress 6,078 enscript-1.6.5 38,787

e2ps-4.34 6,222 twolame-0.3.12 48,223

httptunnel-3.3 7,472 mp3c-0.29 52,620

mpegdemux-0.1.3 7,783 bison-2.4 59,955

barcode-0.96 7,901 tree-puzzle-5.2 62,302

stripcc-0.2.0 8,914 icecast-server-1.3.12 68,571

xfpt-0.07 9,089 dico-2.0 69,308

man-1.5h1 11,059 aalib-1.4p5 73,413

cjet-0.8.9 11,287 pies-1.2 84,649

admesh-0.95 11,439 rnv-1.7.10 93,858

hspell-1.0 11,520 mpg123-1.12.1 101,701

juke-0.7 12,518 raptor-1.4.21 109,053

gzip-spec2000 12,980 lsh-2.0.4 109,617

Table 5. 25 benchmark programs for our partial Octagon analysis.

Programs LOC Programs LOC

brutefir-1.0f 398 ecasound2.2-2.7.0 18,236

consol_calculator 1,124 unrtf-0.19.3 19,019

dtmfdial-0.2+1 1,440 jwhois-3.0.1 19,375

id3-0.15 1,652 less-382 31,623

spell-1.0 2,284 flake-0.11 35,951

mp3rename-0.6 2,466 mp3c-0.29 52,620

e2ps-4.34 6,222 bison-2.4 59,955

httptunnel-3.3 7,472 icecast-server-1.3.12 68,571

mpegdemux-0.1.3 7,783 dico-2.0 69,308

barcode-0.96 7,901 pies-1.2 84,649

juke-0.7 12,518 raptor-1.4.21 109,053

bc-1.06 16,528 lsh-2.0.4 109,617

irmp3-ncurses-0.5.3.1 17,195
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A BENCHMARK PROGRAMS
Table 4 and 5 show the benchmark programs for the partially flow-sensitive interval and pointer

analyses, and the partial Octagon analysis, respectively.
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