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Abstract

The problem of learning logical rules from examples
arises in diverse fields, including program synthesis,
logic programming, and machine learning. Existing
approaches either involve solving computationally
difficult combinatorial problems, or performing pa-
rameter estimation in complex statistical models.

In this paper, we present DIFFLOG, a technique to
extend the logic programming language Datalog
to the continuous setting. By attaching real-valued
weights to individual rules of a Datalog program, we
naturally associate numerical values with individual
conclusions of the program. Analogous to the strat-
egy of numerical relaxation in optimization prob-
lems, we can now first determine the rule weights
which cause the best agreement between the training
labels and the induced values of output tuples, and
subsequently recover the classical discrete-valued
target program from the continuous optimum.

We evaluate DIFFLOG on a suite of 34 benchmark
problems from recent literature in knowledge dis-
covery, formal verification, and database query-by-
example, and demonstrate significant improvements
in learning complex programs with recursive rules,
invented predicates, and relations of arbitrary arity.

1 Introduction

As a result of its rich expressive power and efficient imple-
mentations, the logic programming language Datalog has wit-
nessed applications in diverse domains such as bioinformat-
ics [Seo, 2018], big-data analytics [Shkapsky et al., 2016],
robotics [Poole, 1995], networking [Loo e al., 20061, and for-
mal verification [Bravenboer and Smaragdakis, 2009]. Users
on the other hand are often unfamiliar with logic programming.
The programming-by-example (PBE) paradigm aims to bridge
this gap by providing an intuitive interface for non-expert
users [Gulwani, 2011].

Typically, a PBE system is given a set of input tuples and
sets of desirable and undesirable output tuples. The central
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computational problem is that of synthesizing a Datalog pro-
gram, i.e., a set of logical inference rules which produces,
from the input tuples, a set of conclusions which is compati-
ble with the output specification. Previous approaches to this
problem focus on optimizing the combinatorial exploration
of the search space. For example, ALPS maintains a small set
of syntactically most-general and most-specific candidate pro-
grams [Si ef al., 2018], Zaatar encodes the derivation of output
tuples as a SAT formula for subsequent solving by a con-
straint solver [Albarghouthi et al., 2017], and inductive logic
programming (ILP) systems employ sophisticated pruning
algorithms based on ideas such as inverse entailment [Mug-
gleton, 1995]. Given the computational complexity of the
search problem, however, these systems are hindered by large
or difficult problem instances. Furthermore, these systems
have difficulty coping with minor user errors or noise in the
training data.

In this paper, we take a fundamentally different approach
to the problem of synthesizing Datalog programs. Inspired
by the success of numerical methods in machine learning and
other large scale optimization problems, and of the strategy of
relaxation in solving combinatorial problems such as integer
linear programming, we extend the classical discrete semantics
of Datalog to a continuous setting named DIFFLOG, where each
rule is annotated with a real-valued weight, and the program
computes a numerical value for each output tuple. This step
can be viewed as an instantiation of the general K -relation
framework for database provenance [Green er al., 2007] with
the Viterbi semiring being chosen as the underlying space K of
provenance tokens. We then formalize the program synthesis
problem as that of selecting a subset of target rules from a large
set of candidate rules, and thereby uniformly capture various
methods of inducing syntactic bias, including syntax-guided
synthesis (SyGuS) [Alur et al., 20151, and template rules in
meta-interpretive learning [Muggleton et al., 2015].

The synthesis problem thus reduces to that of finding the
values of the rule weights which result in the best agreement
between the computed values of the output tuples and their
specified values (1 for desirable and 0 for undesirable tuples).
The fundamental NP-hardness of the underlying decision prob-
lem manifests as a complex search surface, with local minima
and saddle points. To overcome these challenges, we devise
a hybrid optimization algorithm which combines Newton’s
root-finding method with periodic invocations of a simulated



annealing search. Finally, when the optimum value is reached,
connections between the semantics of DIFFLOG and Datalog
enable the recovery of a classical discrete-valued Datalog pro-
gram from the continuous-valued optimum produced by the
optimization algorithm.

A particularly appealing aspect of relaxation-based synthe-
sis is the randomness caused by the choice of the starting posi-
tion and of subsequent Monte Carlo iterations. This manifests
both as a variety of different solutions to the same problem,
and as a variation in running times. Running many search in-
stances in parallel therefore enables stochastic speedup of the
synthesis process, and allows us to leverage compute clusters
in a way that is fundamentally impossible with deterministic
approaches. We have implemented DIFFLOG and evaluate it on
a suite of 34 benchmark programs from recent literature. We
demonstrate significant improvements over the state-of-the-
art, even while synthesizing complex programs with recursion,
invented predicates, and relations of arbitrary arity.

Contributions. Our work makes the following contributions:

1. A formulation of the Datalog synthesis problem as that of
selecting a set of desired rules. This formalism generalizes
syntax-guided query synthesis and meta-rule guided search.

2. A fundamentally new approach to solving rule selection
by numerically minimizing the difference between the
weighted set of candidate rules and the reference output.

3. An extension of Datalog which also associates output tu-
ples with numerical weights, and which is a continuous
refinement of the classical semantics.

4. Experiments showing state-of-the-art performance on a
suite of diverse benchmark programs from recent literature.

2 Related Work

Weighted logical inference. The idea of extending logical
inference with weights has been studied by the community in
statistical relational learning. [Shapiro, 1983] proposes quanti-
tative logic programming to measure the uncertainty of expert
systems by associating logical rules with uncertainty scores.
Markov Logic Networks [Richardson and Domingos, 2006;
Kok and Domingos, 2005] view a first order formula as a
template for generating a Markov random field, where the
weight attached to the formula specifies the likelihood of
its grounded clauses. ProbLog [De Raedt er al., 2007] ex-
tends logic programing languages with probabilistic rules
and reduces the inference problem to weighted model count-
ing. DeepProbLog [Manhaeve er al., 2018] further extends
ProbLog with neural predicates (e.g., input data which can be
images). In another direction, aProbLog [Kimmig er al., 2011;
Kimmig er al., 2017] generalizes ProbLog by associating logi-
cal rules with elements from a semiring, instead of just proba-
bility values. These frameworks could conceivably serve as
the underlying inference engine of our framework but we use
the Viterbi semiring because: (a) inference in these frame-
works is #P-complete and only requires polynomial time in
the Viterbi semiring; and (b) automatic differentiation is either
inefficient or simply not available.

Structure learning for probabilistic logics. Weight learn-
ing has also been used as a means to structure learning [Mug-

gleton, 1996; Wang et al., 2014; Embar et al., 2018]; however,
our work has two significant differences: First, the values we
assign to tuples do not have natural interpretations as probabili-
ties, so that exact inference can be performed just as efficiently
as solving Datalog programs. Furthermore, while the search
trajectory itself proceeds through smoothed programs with
non-zero loss, our termination criterion ensures that the final
result is still a classical Datalog program which is consistent
with the provided examples.

Inductive logic programming (ILP). The Datalog synthesis
problem can also be seen as an instance of the classic ILP
problem. [Cohen and Page, 1995] show that learning a single
rule that is consistent with labelled examples is NP-hard: this
is similar to our motivating result in Theorem 2, where we
demonstrate NP-hardness even if candidate rules are explicitly
specified.

Metagol [Muggleton ef al., 2015] supports higher-order
dyadic Datalog synthesis but the synthesized program can
only consist of binary relations. Metagol is built on top of
Prolog which makes the system very expressive but also in-
troduces difficult issues with non-terminating programs. In
contrast, by performing a bidirectional search based on query-
by-committee and building on top of the Z3 fixpoint engine,
ALPS [Si er al., 2018] exhibits significantly greater scalability
while synthesizing Datalog programs. Recent works such as
NeuralLLP [Yang er al., 2017] and JILP [Evans and Grefen-
stette, 2018] cast logic program synthesis as a differentiable
end-to-end learning problem and model relation joins as a form
of matrix multiplication, which also limits them to binary rela-
tions. NTP [Rocktiischel and Riedel, 2017] constructs a neural
network as a learnable proof (or derivation) for each output
tuple up to a predefined depth (e.g. < 2) with a few (e.g. < 4)
templates, where the neural network could be exponentially
large when either the depth or the number of templates grows.
The predefined depth and a small number of templates could
significantly limit the class of learned programs. Our work
seeks to synthesize Datalog programs consisting of relations
of arbitrary arity and support rich features like recursion and
predicate invention.

MCMC methods for program synthesis. Markov chain
Monte-Carlo (MCMC) methods have also been used for pro-
gram synthesis. For example, in STOKE, [Schkufza erf al.,
2016] apply the Metropolis-Hastings algorithm to synthesize
efficient loop free programs. Similarly, [Liang et al., 2010]
show that program transformations can be efficiently learned
from demonstrations by MCMC inference.

3 The Datalog Synthesis Problem

In this section, we concretely describe the Datalog synthesis
problem, and establish some basic complexity results. We
use the family tree shown in Figure 1 as a running example.
In Section 3.1, we briefly describe how one may compute
samegen(z, y) from parent(x,y) using a Datalog program.
In Section 3.2, we formalize the query synthesis problem as
that of rule selection.



Will Ann Jim Ava  Input tuples (EDB) Output tuples (IDB)
\ / \ / parent (Will, Noah) samegen (Noah, Emma)
parent (Ann,Noah)  samegen (Ann,Will)
Noah Emma parent (Jim, Emma)  samegen (Jim, Ann)

parent (Ava, Emma) cee
parent (Noah, Liam)

Tiam parent (Emma, Liam)

(a) (b) (©)

Figure 1: Example of a family tree (a), and its representation as a set
of input tuples (b). An edge from x to y indicates that x is a parent
of y, and is represented symbolically as the tuple parent(z, y). The
user wishes to realize the relation samegen(x, y), indicating the
fact that « and y occur are from the same generation of the family (c).

3.1 Overview of Datalog

The set of tuples inhabiting relation samegen(z,y) can be
computed using the following pair of inference rules, r1 and ro:

r1: samegen(x, y) :— parent(zx, z), parent(y, z).
ro: samegen(x, u) :— parent(z, y), parent(u, v), samegen(y,

Rule r; describes the fact that for all persons z, y, and z,
if both x and y are parents of z, then z and y occur at the
same level of the family tree. Informally, this rule forms the
base of the inductive definition. Rule r5 forms the inductive
step of the definition, and provides that z and u occur in the
same generation whenever they have children y and v who
themselves occur in the same generation.

By convention, the relations which are explicitly provided as
part of the input are called the EDB, Z = {parent}, and those
which need to be computed as the output of the program are
called the IDB, O = {samegen}. To evaluate this program,
one starts with the set of input tuples, and repeatedly applies
rules 71 and ro to derive new output tuples. Note that because
of the appearance of the literal samegen(y, v) on the right side
of rule r,, discovering a single output tuple may recursively
result in the further discovery of additional output tuples. The
derivation process ends when no additional output tuples can
be derived, i.e., when the set of conclusions reaches a fixpoint.

More generally, we assume a collection of relations,
{P,Q,...}. Each relation P has an arity k¥ € N, and is a
set of tuples, each of which is of the form P(cy,ca,. .., k),
for some constants c1, co, ..., c;. The Datalog program is a
collection of rules, where each rule r is of the form:

Ph(uh) — Pl(Ul),PQ(UQ), P ,Pk(uk),

where P, is an output relation, and uy, w1, us, ..., Ui are
vectors of variables of appropriate length. The variables u,
Us, ..., Uk, Uy appearing in the rule are implicitly universally
quantified, and instantiating them with appropriate constants
v1, Vs, ..., Uk, U}, yields a grounded constraint g of the form
Pi(v1) A Pa(va) A+ A Py(vr) = Py(vp): “Ifall of the
antecedent tuples Ay = {P1(v1), Pa(v2), ..., Pp(vg)} are
derivable, then the conclusion cqg = Pp,(vy,) is also derivable.”

3.2 Synthesis as Rule Selection

The input-output examples, 7, O, and O_. Instead of ex-
plicitly providing rules ; and 75, the user provides an example
instance of the EDB I, and labels a few tuples of the output
relation as “desirable” or “undesirable” respectively:

O4 = {samegen(ann, Jim)}, and

O_ = {samegen(ava, Liam), samegen(Jim, Emma)},
indicating that Ann and Jim are from the same generation, but
Ava and Liam and Jim and Emma are not. Note that the user is
free to label as many potential output tuples as they wish, and
the provided labels O UO_ need not be exhaustive. The goal
of the program synthesizer is to find a set of rules R, which
produce all of the desired output tuples, i.e., O; C R(I),
and none of the undesired tuples, i.e., O_ N Rs(I) = 0.

The set of candidate rules, R. The user often possesses
additional information about the problem instance and the
concept being targeted. This information can be provided to
the synthesizer through various forms of bias, which direct the
search towards desired parts of the search space. A particularly
common form in the recent literature on program synthesis
is syntactic: for example, SyGuS requires a description of
the space of potential solution programs as a context-free
grammar [Alur et al., 2015], and recent ILP systems such as
Metagol [Muggleton er al., 2015] require the user to provide

" a set of higher-order rule templates (“metarules”) and order

constraints over predicates and variables that appear in clauses.
In this paper, we assume that the user has provided a large set
of candidate rules R and that the target concept Ry is a subset
of these rules: R C R.

These candidate rules can express various patterns that
could conceivably discharge the problem instance. For exam-
ple, R can include the candidate rule rg, “samegen(z,y) —
samegen(y, x)”, which indicates that the output relation is
symmetric, and the candidate rule r;, “samegen(x,z) —
samegen(z, y), samegen(y, z)”, which indicates that the re-
lation is transitive. Note that the assumption of the candidate
rule set R uniformly subsumes many previous forms of syn-
tactic bias, including those in SyGuS and Metagol.

Also note that R can often be automatically populated: In
our experiments in Section 6, we automatically generate R
using the approach introduced by ALPs [Si er al., 2018]. We
start with seed rules that follow a simple chain pattern (e.g.,
“Pi(x1,24) = Pa(x1,22), P3(x2,23), Py(x3,24)”), and re-
peatedly augment R with simple edits to the variables, pred-
icates, and literals of current candidate rules. The candidate
rules thus generated exhibit complex patterns, including recur-
sion, and contain literals of arbitrary arity. Furthermore, any
conceivable Datalog rule can be produced with a sufficiently
large augmentation distance.

Problem 1 (Rule Selection). Let the following be given: (a) a
set of input relations, T and output relations, O, (b) the set of
input tuples 1, (c) a set of positive output tuples O, (d) a set
of negative output tuples O_, and (e) a set of candidate rules
R which map the input relations T to the output relations O.
Find a set of target rules Ry C R such that:

O+ C Rs(I), and O_ N Rs(I) = 0.

Finally, we note that the rule selection problem is NP-hard:
this is because multiple rules in the target program R, may in-
teract in non-compositional ways. The proof proceeds through
a straightforward encoding of the satisfiability of a 3-CNF
formula, and is provided in the Appendix.

Theorem 2. Determining whether an instance of the rule
selection problem, (Z,0,1,0,,0_, R), admits a solution is
NP-hard.



‘ parent(Noah, Liam) ‘ ‘ parent(Noah, Liam) ‘

r1(Noah, Noah, Liam)

samegen(Noah, Noah)

‘Pafem(Wilquoah) ‘ ‘parent(AnnTNoah) ‘ ‘parent(will,Noah) ‘ ‘parent(hnn,Noah) ‘

1 (Will, Ann, Noah) r2(Will,Noah, Ann,Noah)

samegen(Will,Ann) samegen(Will, Ann)
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Figure 2: Examples of derivation trees, 7 (a) and 72 (b) in-
duced by various combinations of candidate rules, applied to the
EDB of familial relationships from Figure 1. The input tuples are
shaded in grey. We present two derivation trees for the conclusion
samegen(Will,Ann) using rules 71 and 72 in Section 3.1.

4 A Smoothed Interpretation for Datalog

In this section, we describe the semantics of DIFFLOG, and
present an algorithm to evaluate and automatically differentiate
this continuous-valued extension.

4.1 Relaxing Rule Selection

The idea motivating DIFFLOG is to generalize the concept of
rule selection: instead of a set of binary decisions, we associate
each rule r with a numerical weight w,. € [0, 1]. One possible
way to visualize these weights is as the extent to which they
are present in the current candidate program. The central
challenge, which we will now address, is in specifying how
the vector of rule weights w determines the numerical values
v (w) for the output tuples ¢ of the program. We will simply
write v (w) when the set of rules R and the set of input tuples
I are evident from context.

Every output tuple of a Datalog program is associated with
a set of derivation trees, such as those shown in Figure 2.
Let 7, be the rule associated with each instantiated clause g
that appears in the derivation tree 7. We define the value of 7,
v (w), as the product of the weights of all clauses appearing in
7, and the value of an output tuple ¢ as being the supremum of
the values of all derivation trees of which it is the conclusion:

vy (w) = H wy,, and €))
clause geT
ve(w) = sup vy (w), 2)

7 with conclusion ¢

with the convention that sup()) = 0. For example, if w,, =
0.8 and w,, = 0.6, then the weight of the trees 71 and 7
from Figure 2 are respectively v, (w) = w,, = 0.8 and
Vry (W) = Wy, wy, = 0.48.

Since 0 < w, < 1, it follows that v, (w) < 1. Also note
that a single output tuple may be the conclusion of infinitely
many proof trees (see the derivation structure in Figure 3),
leading to the deliberate choice of the supremum in Equation 2.

One way to consider Equations 1 and 2 is as replacing the
traditional operations (A, V) and values {true, false} of the
Boolean semiring with the corresponding operations (X, max)
and values [0, 1] of the Viterbi semiring. The study of var-
ious semiring interpretations of database query formalisms
has a rich history motivated by the idea of data provenance.
The following result follows from Prop. 5.7 in [Green ef al.,

’V‘S(Ann,will)
| -~ |

‘ samegen(Will, Ann) ‘ ‘ samegen(Ann, Will) ‘

rs(Will, Ann)

Figure 3: The rule r,, “someone(z,y) :— samegen(y,x)”, in-
duces cycles in the clauses obtained at fixpoint. When unrolled into
derivation trees such as those in Figure 2, these cycles result in the
production of infinitely many derivation trees for a single output tuple.

20071, and concretizes the idea that DIFFLOG is a refinement
of Datalog:

Theorem 3. Let R be a set of candidate rules, and w be an
assignment of weights w, € [0,1] to each of them, r € R.
Define Ry = {r | w, > 0}, and consider a potential output

tuple t. Then, v/ (w) > 0 ifft € R, (I).
Furthermore, in the Appendix, we show that the output
values v (w) is well-behaved in its domain of definition:

Theorem 4. The value of the output tuples, vi(w), varies
monotonically with the rule weights w, and is continuous in
the region 0 < w, < 1.

Note that DIFFLOG is discontinuous at boundary points when
w, = 0 or w, = 1, and undefined outside the unit interval.
To prevent this from causing problems during learning with
gradient descent, we clamp the rule weights to the interval
[0.01,0.99] in our implementation.

We could conceivably have chosen a different semiring in
our definitions in Equations 1 and 2. One alternative would
be to choose a space of events, corresponding to the inclusion
of individual rules, and choosing the union and intersection
of events as the semiring operations. This choice would make
the system coincide with ProbLog [De Raedt er al., 2007].
However, the #P-completeness of inference in probabilistic
logics would make the learning process computationally ex-
pensive. Other possibilities, such as the arithmetic semiring
(R, 4+, %,0,1), would lead to unbounded values for output
tuples in the presence of infinitely many derivation trees.

4.2 [Evaluating and Automatically Differentiating
DIFFLOG Programs

Because the set of derivation trees for an individual tuple ¢t may
be infinite, note that Equation 2 is merely definitional, and does
not prescribe an algorithm to compute v;(w). Furthermore,
numerical optimization requires the ability to automatically
differentiate these values, i.e., to compute V,,v;.

The key to automatic differentiation is tracking the prove-
nance of each output tuple [Green et al., 2007]. Pick an output
tuple ¢, and let 7 be its derivation tree with greatest value.
For the purposes of this paper, the provenance of ¢ is a map,
Iy = {r = #rinT | r € R}, which maps each rule r to
the number of times it appears in 7. Given the provenance
I; of a tuple, observe that v;(w) = ], cx wfn"(r), so that the
derivative of v;(w) can be readily computed as follows:

Ovg(w) _ lt(r)vt(w)'

ow, Wy

3)

In Algorithm 1, we present an algorithm to compute the
output values v;(w) and provenance l;, given R, w, and the



Algorithm 1 EVALUATE(R, w, I), where R is a set of rules,
w is an assignment of weight to each rule in R, and I is a set
of input tuples.

1. Initialize the set of tuples in each relation, Fp := (), their valua-
tions, u(t) := 0, and their provenance I(t) = {r + oo | r € R}.

2. For each input relation P, update F'p := Ip, and for each ¢t € Ip,
update u(t) := land I(t) = {r — 0| r € R}.
3. Until (F, u) reach fixpoint,
(a) Compute the immediate consequence of each rule, r,
“Pr(up) :— Pi(u1), P2(u2), ..., Ps(ug)™
Fp, = mu, (Fp, (w1) > Fp, (u2) b - 4 Fp, (ug)).

Furthermore, for each tuplet € I’ I’Dh , determine all sets of an-

tecedent tuples, Ay (t) = {P1(v1), P2(v2),..., Pe(vi)},

which result in its production.
(b) Update Fp, = Fp, U Fp, .
(c) Foreach tuple t € Fp, and each A,(t): (i) compute u; =

Wy Hle u(P;(v;)), and (i) if u(t) < ug, update:

k
u(t) = up, and 1(t) = {r = 1} + > _I(Pi(v3)),
i=1

where addition of provenance values corresponds to the
element-wise sum.

4. Return (F, u,l).

input tuples /. The algorithm is essentially an instrumented
version of the “naive” Datalog evaluator [Abiteboul et al.,
1995]. We outline the proof of the following correctness and
complexity claims in the Appendix.

Theorem 5. Fix a set of input relations I, output relations O,
and candidate rules R. Let EVALUATE(R, w,I) = (F,u,l).
Then: (a) F = R(I), and (b) u(t) = vi(w). Furthermore,
EVALUATE(R, w, I) returns in time poly(|I]).

5 Formulating the Optimization Problem

We formulate the DIFFLOG synthesis problem as finding the
value of the rule weights w which minimizes the difference
between the output values of tuples, v, (w), and their expected
values, 1 if t € Oy, and 0if £ € O_. Specifically, we seek to
minimize the L2 loss,

Liw) =Y (I-v(w)?+ > w(w)? @

teO4 teO_

At the optimum point, Theorem 3 enables the recovery of a
classical Datalog program from the optimum value w*.

Hybrid optimization procedure. In program synthesis, the
goal is often to ensure exact compatibility with the pro-
vided positive and negative examples. We therefore seek
zeros of the loss function L(w), and solve for this us-
ing Newton’s root-finding algorithm: w01 = w® —
L(w)V L(w) /|| VwL(w)||?. To escape from local minima
and points of slow convergence, we periodically intersperse
iterations of the MCMC sampling, specifically simulated an-
nealing.

Forbidden rules. If a single rule » € R is seen to indepen-
dently derive an undesirable tuple t € O_, i.e., if l;(r) > 1
and [;(r") = 0 for all r # r, then it is marked as a forbidden

rule, and its weight is immediately clamped to 0: w$i+1) =0.

Learning details. We initialize w by uniformly sampling
weights w, € [0.25,0.75]. We apply MCMC sampling af-
ter every 30 iterations of Newton’s root-finding method, and
sample new weights as follows:

X ~U(0,1)
w o WoraV 2X if X <0.5
Tl 1= (1 = wera)/2(1 — X)) otherwise.
The temperature 7" used in simulated annealing is as follows:
1.0

T =
C xlog(5 + Hiter)

where C is initially 0.0001 and #iter is the number of itera-
tions. We accept the newly proposed sample with probability

Pace = min(l, 7Tnew/7TCUT'7')7

where 7eyrr = exp(—Lo(Weurr)/T) and Tpew =
exp(—Lo(Whew)/T).

Separation-guided search termination. After computing
each subsequent w(”), we examine the provenance values
for each output tuple to determine whether the current po-
sition can directly lead to a solution to the rule selection
problem. In particular, we compute the sets of desirable—
Ry = {r € I(t) | t € O4}—and undesirable rules—
R_={rel(t) |t e O_},and check whether Ry NR_ = ().
If these sets are separate, then we examine the candidate solu-
tion 2., and return if it satisfies the output specification.

6 Empirical Evaluation
Our experiments address the following aspects of DIFFLOG:

1. Its effectiveness at synthesizing Datalog programs and com-
parison to the state-of-the-art tool ALPs [Si et al., 2018],
which already outperforms existing ILP tools [Albargh-
outhi et al., 2017; Muggleton et al., 2015] and supports
relations with arbitrary arity, sophisticated joins, and predi-
cate invention;

2. the benefit of employing MCMC search compared to a
purely gradient-based method; and

3. scaling with number of training labels and rule templates.

We evaluated DIFFLOG on a suite of 34 benchmark prob-
lems [Si et al., 2018]. This collection draws benchmarks from
three different application domains: (a) knowledge discovery,
(b) program analysis, and (c) relational queries. The charac-
teristics of the benchmarks are shown in the Appendix. These
benchmarks involve up to 10 target rules, which could be
recursive and involve relations with arity up to 6. The imple-
mentation of DIFFLOG comprises 4K lines of Scala code. We
use Newton’s root-finding method for continuous optimization
and apply MCMC-based random sampling every 30 iterations.
All experiments were conducted on Linux machines with Intel
Xeon 3GHz processors and 64GB memory.



Table 1: Characteristics of benchmarks and performance of DIFFLOG
compared to ALPS. Rel shows the number of relations. Rule rep-
resents the number of expected (Exp) and candidate rules (Cnd).
Tuple shows the number of input and output tuples. Iter and Smpl
report the number of iterations and MCMC samplings. Time shows
the running time of DIFFLOG and ALPS in seconds.

Benchmark Rel Rule Tuple DIFFLOG ALPS

Exp Cnd In Out Iter Smpl Time Time
inflamation 7 2 134 640 49 1 0 1 2
abduce 4 3 80 12 20 1 0 <1 2
animals 13 4 336 50 o4 1 0 1 40
ancestor 4 4 80 8 27 1 0 <1 14
buildwWall 5 4 472 30 4 5 1 7 67
samegen 3 3 188 7 22 1 0 2 12
scc 3 3 384 9 68 6 1 28 56
polysite 6 3 552 97 27 17 1 27 84
downcast 9 4 1,267 89 175 5 1 30 1,646
rv-check 5 5 335 74 21,205 41 22 195
andersen 5 4 175 7 7 1 0 4 27
l-call-site 9 4 173 28 16 4 1 4 106
2-call-site 9 4 122 30 15 25 1 53 676
l-object 11 4 46 40 13 3 1 3 345
1-type 12 4 70 48 22 3 1 4 13
escape 10 6 140 13 19 2 1 1 5
modref 13 10 129 18 34 1 0 1 2,836
sql-10 3 2 734 10 2 7 1 11 41
sql-14 4 3 23 11 6 1 0 <1 54
sql-15 4 2 186 50 7 902 31 875 11

6.1 Effectiveness

We first evaluate the effectiveness of DIFFLOG and compare it
with ALPS. The running time and solution of DIFFLOG depends
on the random choice of initial weights. DIFFLOG exploits this
characteristic by running multiple synthesis processes for each
problem in parallel. The solution is returned once any one
of the parallel processes successfully synthesizes a Datalog
program which is consistent with the specifications. We popu-
lated 32 processes in parallel and measured the running time
until the first solution was found. The timeout is set to 1 hour
for each problem.

Table 1 shows the running of DIFFLOG and ALps. Of the
34 benchmarks, we excluded 14 benchmarks where either
both DiFFLOG and ALPs find solutions within a second (13
benchmarks) or both solvers time-out (1 benchmark). DIFFLOG
outperforms ALps on 19 of the remaining 20 benchmarks
in Table 1. In particular, DIFFLOG is orders of magnitude
faster than ALPS on most of the program analysis benchmarks.
Meanwhile, the continuous optimization may not be efficient
when the problem has many local minimas and the space is
not convex. For example, sgql-15 has a lot of sub-optimal
solutions that generate not only all positive output tuples but
also some negative ones.

Figure 4 depicts the distribution of running time on the
benchmarks. The results show that DIFFLOG is always able
to find solutions for all the benchmarks except for occasional
timeouts on downcast, rv-check, scc, and sgql-15.
Also note that even the median running time of DIFFLOG is
smaller than the running time of ALPs for 13 out of 20 bench-
marks.

2 2 20 30
60

Running Time (min)

runs. The numbers on top represents the number of timeouts. Green
circles represent the running time of ALPS.

6.2 Impact of MCMC-based sampling

Next, we evaluate the impact of our MCMC-based sampling by
comparing the performance of three variants of DIFFLOG: (a) a
version that uses both Newton’s method and the MCMC-based
technique (Hybrid), which is the same as in Section 6.1, (b) a
version that uses only Newton’s method (Newton), and (c) a
version that uses only the MCMC-based technique (MCMC).
Table 2 shows the running time of the best run and the number
of timeouts among 32 parallel runs for these three variants.
The table shows that our hybrid approach strikes a good bal-
ance between exploitation and exploration. In many cases,
Newton gets stuck in local minima; for example, it cannot
find any solution for rv-check within one hour. MCMC
cannot find any solution for 6 out of 10 benchmarks. Overall,
Hybrid outperforms both Newton and MCMC by reporting
31x and 54 x fewer timeouts, respectively.

6.3 Scalability

Finally, we evaluate the scalability of DIFFLOG-based synthesis,
which is affected by two factors: the number of templates
and the size of training data. Our general observation is that
increasing either of these does not significantly increase the
effective running time (i.e., the best of 32 parallel runs).

Figure 5 shows how running time increases with the num-
ber of templates.! As shown in Figure 5a, the running time
distribution for 2-call-site tends to have larger variance
when the number of templates increases, but the best running
time (out of 32 i.i.d samples) only increases modestly. The
running time distribution for downcast, shown in Figure 5b,
has a similar trend except that smaller number of templates
does not always lead to smaller variance or faster running
time. For instance, the distribution in the setting with 180
templates has larger variance and median than distributions in
the subsequent settings with larger number of templates. This
indicates that the actual combination of templates also matters.
In general, approximately half the benchmarks follow a trend
similar to Figure 5a, with monotonically increasing variance
in running times, while the remaining benchmarks are similar
to Figure 5b.

'We ensure that all candidate rules in a set are also present in
subsequent larger sets.



B Hybrid Newton MCMC
enchmark

Best Median Timeout Best Median Timeout Best Median Timeout
polysite 27s 142s 0 10s 72s 0 12s 76s 0
downcast 30s 310s 2 16s 252s 9 70s 268s 7
rv—-check 22s 948s 2 N/A N/A 32 N/A N/A 32
andersen 4s 29s 0 3s 15s 10 4s 17s 9
l-call-site 4s 18s 0 8s 18s 1 N/A N/A 32
2-call-site 53s 225s 0 27s N/A 17 42s 94s 9
1-object 3s 17s 0 3s N/A 17 N/A N/A 32
1-type 4s 12s 0 3s N/A 18  N/A N/A 32
escape 1s 2s 0 1s N/A 17  N/A N/A 32
modref 1s 2s 0 1s 1s 4 N/A N/A 32
Total 4 125 217

Table 2: Effectiveness of MCMC sampling in terms of the best running time (Best), median running time (Median) and the number of timeouts

(Timeout) out of 32 independent runs.
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Figure 5: Running time distributions for 2-call-site and
downcast with different number of templates.
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Figure 6: Performance of DIFFLOG on andersen with different
sizes of data: (a) the distribution of number of iterations, (b) the
distribution of running time.

i
N o
o o
N
S

N

o
N
1=

Running time (second)

Number of iterations
@
o

o
o

The size of training data is another important factor af-
fecting the performance of DIFFLOG. Figure 6a shows the
distribution of the number of iterations for andersen with
different sizes of training data. According to the results, the
size of training data does not necessarily affect the number
of iterations of DIFFLOG. Meanwhile, Figure 6b shows that
the end-to-end running time increases with more training data.
This is mainly because more training data imposes more cost
on the DIFFLOG evaluator. However, the statistics show that
the running time increases linearly with the size of data.

7 Conclusion

We have presented a technique to synthesize Datalog programs
using numerical optimization. The central idea is to formu-
late the problem as an instance of rule selection, and then
relax classical Datalog to a refinement named DIFFLOG. In a
comprehensive set of experiments, we show that by learning
a DIFFLOG program and then recovering a classical Datalog
program, we can achieve significant speedups over the state-of-

the-art Datalog synthesis systems. In future, we plan to extend
the approach to other synthesis problems such as SyGuS and
to applications in differentiable programming.
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A Proof of Theorems 2, 4 and 5

Theorem 2. Determining whether an instance of the rule
selection problem, (Z,0,I,04,0_, R), admits a solution is
NP-hard.

Proof. Consider a 3-CNF formula ¢ over a set V' of variables:
o= (l11Vlh2Viz)A(l21 Via2 Vigg) A - A(lka Vg2 Vi),

be the given 3-CNF formula, where each literal /;; appearing
in clause c; is either a variable, v;; € V, or its negation,
—v;5. Assume that there are no trivial clauses in ¢, which
simultaneously contain both a variable and its negation. We
will now encode its satisfiability as an instance of the rule
selection problem.

1. For each variable v € V, define the input relations:

pos, = {(c¢) | v € ¢}, and (5)
neg, = {(c) | —v € ¢}, (6)

consisting of all one-place tuples pos, (c) and neg, (c)
indicating whether the variable v occurs positively or
negatively in the clause c.

2. Also, for each variable v, define the input relation var,
which is inhabited by a single tuple var, (v):

var, = {(v)}. @)

3. The idea is to set up the candidate rules so that subsets
of chosen rules correspond to assignments of true / false
values to the variables of . Let Cy(c, v) be an output
relation: we are setting up the problem so that if the tuple
Cy(c,v) is derivable in the synthesized solution, then
there is a satisfying assignment of o where clause c is
satisfied due to the assignment to variable v.

4. For each variable v, create a pair of candidate rules r,
and r—, as follows:

ry = “Co(c,v’) :— pos,(c),var,(v')”, and
Ty = “Ca(c,v") :— neg,(c), var,(v')”.

Selecting the rule r,, corresponds to assigning the value
true to the corresponding variable v, and selecting the
rule r_,, corresponds to assigning it the value false.

5. To prevent the simultaneous choice of rules r, and r—,,,
we set up the three-place input relation conflict(c, ¢/, v),
which indicates that the reason for the simultaneous sat-
isfaction of clauses ¢ and ¢’ cannot be a contradictory
variable v:

conflict = {(¢,c,v) | v € cand ~wv € ¢'} U {(a,a,a)},
®)

where a is some new constant not seen before. We will

motivate its necessity while defining the canary output
relation error next.

6. We detect the simultaneous selection of a pair of rules 7,
and r—,, using the rule r.:

Here error is a three-place output relation indicating the
selection of an inconsistent assignment. We would like
to force the synthesizer to choose the error-detecting rule
re. The selection of the rule r., the presence of the input
tuple conflict(a, a, a), and the selection of the rule r,:

ro = “Co(z, ) :— conflict(z, z,z)”
is the only way to produce the output tuple error(a, a, a),
which we will mark as desired.

7. The output tuple Ca(c, v) indicates the satisfaction of the
clause c because of the assignment to variable v. We use
the presence of such tuples to mark the clause c itself as
being satisfied: let C'i(¢) be a one-place output relation,
and include the rule:

re = “C1(c) =— Ca(c,v)”.
8. In summary, let the rule selection problem P, =
(Z,0,1,04,0_,R) be defined as follows:
(a) Z = {var,, pos,,,neg, | v € V'} U {conflict}.
(b) O = {Cy, C4,error}.
(c) Define the set of input tuples, I, using equations 5,

6,7, and 8.
(d) O ={C4(c) | clause ¢ € ¢} U {error(a,a,a)}.
(e) O_ = {error(c,c’,v) | clauses ¢, and variable v

occurring in ¢}
() R={rv,r— | v € V}IU{re,ra,re}.

Given a 3-CNF formula ¢, the corresponding instance P, of
the rule selection problem can be constructed in polynomial
time. Furthermore, it can be seen that, by construction, P,
admits a solution iff ¢ is satisfiable. It follows that the rule
selection problem is NP-hard. O

Next, we turn our attention to Theorem 4. The first part of
the claim follows immediately from the definition in Equa-
tion 2. We therefore focus on the second part: Note that the
proof of continuity does not immediately follow from Equa-
tion 2 because the supremum of an infinite set of continuous
functions need not itself be continuous. It instead depends
on the observation that there is a finite subset of dominating
derivation trees whose values suffice to compute v, (w).

Theorem 4. The value of the output tuples, vi(w), varies
monotonically with the rule weights w, and is continuous in
the region 0 < w, < 1.

Proof. Fix an assignment of rule weights w. Next, focus
on a specific output tuple ¢, and consider the set of all its
derivation trees 7. Let o, be a pre-order traversal over
its nodes. For example, for the tree 71 in Figure 2a, we
obtain o, = samegen(wWill,Ann),r;(Will,Ann,Noah),
parent(will,Noah), parent(Ann, Noah). It can be shown that
the set of all pre-order traversals, o, over all derivation trees
7 forms a context-free grammar L.

We are interested in trees 7 with high values v, (w), where
the value of a tree depends only on the number of occurrences
of each rule r. It therefore follows that the weight v, (w) is
completely specified by the Parikh image, {r — #rin T},

re = “error(c, ¢, v) :i— Ca(c,v), Co(c’,v), conflict(c, ¢, v)” which counts the number of occurrences of each symbol in



each string of the language L,. From Parikh’s lemma, we
conclude that this forms a semilinear set. Let

m

p(Lt) = U(Cio + Zcij)

i=1

be the Parikh image of Ly, and for each ¢ € {1,2,...,m}, let
7; be the derivation tree corresponding to the rule count c;g. It
follows that:

m
v (w) = sup vy (w) = max v, (w).
7 with conclusion ¢ =1
We have reduced the supremum over an infinite set of con-
tinuous functions to the maximum of a finite set of continu-

ous functions. It follows that v, (w) varies continuously with
w. O

Finally, we turn to the proof of Theorem 5.

Theorem 5. Fix a set of input relations I, output relations O,
and candidate rules R. Let EVALUATE(R, w, I) = (F, u,l).
Then: (a) F = R(I), and (b) u(t) = v (w). Furthermore,
EVALUATE(R, w, I) returns in time poly(|I|).

Proof. The first part of the following result follows from sim-
ilar arguments as the correctness of the classical algorithm.
We briefly describe the proof of the second claim. For each
output tuple ¢, consider all of its derivation trees 7p,; with
maximal value, and identify the tree 7, with shortest height
among these. All first-level sub-trees of 7, must themselves
possess the shortest-height-maximal-value property, so that
their height is bounded by the number of output tuples. Since
the (F, u,l)-loop in step 3 of Algorithm 1 has to hit a fixpoint
within as many iterations, and since each iteration runs in
polynomial time, the claim about running time follows. [

B Benchmarks and Experimental Results

The characteristics of benchmarks are shown in Table 3.

Table 3: Benchmarks characteristics. Rec and #Rel shows the
programs that require recursive rules, and the number of relations.
#Rules represents the number of expected (Exp) and candidate rules
(Cand). #Tuples shows the number of input and output tuples.

Benchmark Rec #Rel #Rules #Tuples
Exp Cand In Out

2 inflamation 7 2 134 640 49
2 abduce 4 3 80 12 20
Q animals 13 4 336 50 64
A ancestor v 4 4 80 8 27
@ buildWall v 5 4 472 30 4
© Samegen v 3 3 188 7 22
2 path v 2 2 6 7 31
S scc v 3 3 384 9 68
polysite 6 3 552 97 27
downcast 9 4 1,267 89 175
2 rv-check 5 5 335 74 2
_;* andersen v 5 4 175 7 7
c l-call-site v 9 4 173 28 16
< 2-call-site v 9 4 122 30 15
€ 1-object v 1l 4 46 40 13
S 1-type v 12 4 70 42 15
a4 l-obj-type v 13 5 12 48 22
escape v 10 6 140 13 19
modref v 13 10 129 18 34
sql-01 4 1 33 21 2
sq1-02 2 1 16 3 1
sql-03 2 1 70 4 2
sql-04 3 2 7 9 6

8 sql-05 3 1 17 12 5
g sql-06 3 2 9 9 9
G sql-07 2 1 52 5 5
w sql-08 4 3 206 6 2
S sql-09 4 2 52 6 1
= sql-10 3 2 73410 2
g sql-11 7 4 170 30 2
sql-12 6 3 32 36 7
sql-13 3 1 10 17 7
sql-14 4 3 23 11 6
sgql-15 4 2 186 50 7
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