
Noname manuscript No.
(will be inserted by the editor)

Learning Analysis Strategies for Octagon and
Context Sensitivity from Labeled Data Generated
by Static Analyses

Kihong Heo · Hakjoo Oh · Hongseok
Yang

Received: date / Accepted: date

Abstract We present a method for automatically learning an effective strat-
egy for clustering variables for the Octagon analysis from a given codebase.
This learned strategy works as a preprocessor of Octagon. Given a program
to be analyzed, the strategy is first applied to the program and clusters vari-
ables in it. We then run a partial variant of the Octagon analysis that tracks
relationships among variables within the same cluster, but not across differ-
ent clusters. The notable aspect of our learning method is that although the
method is based on supervised learning, it does not require manually-labeled
data. The method does not ask human to indicate which pairs of program
variables in the given codebase should be tracked. Instead it uses the impact
pre-analysis for Octagon from our previous work and automatically labels vari-
able pairs in the codebase as positive or negative. We implemented our method
on top of a static buffer-overflow detector for C programs and tested it against
open source benchmarks. Our experiments show that the partial Octagon anal-
ysis with the learned strategy scales up to 100KLOC and is 33x faster than
the one with the impact pre-analysis (which itself is significantly faster than
the original Octagon analysis), while increasing false alarms by only 2%. The
general idea behind our method is applicable to other types of static analyses
as well. We demonstrate that our method is also effective to learn a strategy
for context-sensitivity of interval analysis.

This work was carried out while Heo was at Seoul National University and Yang was at the
University of Oxford.

Kihong Heo
E-mail: kheo@cis.upenn.edu

Hakjoo Oh
E-mail: hakjoo oh@korea.ac.kr

Hongseok Yang
E-mail: hongseok.yang@kaist.ac.kr

2 Kihong Heo et al.

Keywords Static Analysis · Machine Learning · Relational Analysis ·
Context-sensitivity

1 Introduction

Relational program analyses track sophisticated relationships among program
variables and enable the automatic verification of complex properties of pro-
grams [3,9]. However, the computational costs of various operations of these
analyses are high so that vanilla implementations of the analyses do not scale
even to moderate-sized programs. For example, transfer functions of the Oc-
tagon analysis [9] have a cubic worst-case time complexity in the number of
program variables, which makes it impossible to analyze large programs.

In this paper, we consider one of the most popular optimizations used by
practical relational program analyses, called variable clustering [9,16,28,1].
Given a program, an analyzer with this optimization forms multiple relatively-
small subsets of variables, called variable clusters or clusters. Then, it limits
the tracked information to the relationships among variables within each clus-
ter, not across those clusters. So far strategies based on simple syntactic or
semantic criteria have been used for clustering variables for a given program,
but they are not satisfactory. They are limited to a specific class of target
programs [28,1] or employ a pre-analysis that is cheaper than a full rela-
tional analysis but frequently takes order-of-magnitude more time than the
non-relational analysis for medium-sized programs [16].

In this paper, we propose a new method for automatically learning a
variable-clustering strategy for the Octagon analysis from a given codebase.
When applied to a program, the learned strategy represents each pair of vari-
ables (xi, xj) in the program by a boolean vector, and maps such a vector to
⊕ or 	, where ⊕ signifies the importance of tracking the relationship between
xi and xj . If we view such ⊕-marked (xi, xj) as an edge of a graph, the variant
of Octagon in this paper decides to track the relationship between variables x
and y only when there is a path from x to y in the graph. According to our
experiments, running this strategy for all variable pairs is quick and results
in a good clustering of variables, which makes the variant of Octagon achieve
performance comparable to the non-relational Interval analysis while enjoying
the accuracy of the original Octagon in many cases.

The most important aspect of our learning method is the automatic pro-
vision of labeled data. Although the method is essentially an instance of su-
pervised learning, it does not require the common unpleasant involvement of
humans in supervised learning, namely, labeling. Our method takes a code-
base consisting of typical programs of small-to-medium size, and automati-
cally generates labels for pairs of variables in those programs by using the
impact pre-analysis from our previous work [16], which estimates the impact
of tracking relationships among variables by Octagon on proving queries in
given programs. Our method precisely labels a pair of program variables with
⊕ when the pre-analysis says that the pair should be tracked. Because this

Learning Analysis Strategies for Octagon and Context Sensitivity 3

learning occurs offline, we can bear the cost of the pre-analysis, which is still
significantly lower than the cost of the full Octagon analysis. Once labeled
data are generated, our method runs an off-the-shelf classification algorithm,
such as decision-tree inference [10], for inferring a classifier for those labeled
data. This classifier is used to map vector representations of variable pairs to
⊕ or 	. Conceptually, the inferred classifier is a further approximation of the
pre-analysis, which is found automatically from a given codebase.

The experimental results show that our method results in the learning
of a cost-effective variable-clustering strategy. We implemented our learning
method on top of a static buffer overflow detector for C programs and tested
against open source benchmarks. In the experiments, our analysis with the
learned variable-clustering strategy scales up to 100KLOC within the two
times of the analysis cost of the Interval analysis. This corresponds to the
33x speed-up of the selective relational analysis based on the impact pre-
analysis [16] (which was already significantly faster than the original Octagon
analysis). The price of speed-up was mere 2% increase of false alarms.

The general idea of this approach is applicable to learn a strategy for
other types of sensitivities in static analysis. To demonstrate it, we designed
a partially context-sensitive interval analysis by following the same idea. The
experimental results show that our method is also effective to learn a strategy
for context-sensitivity.

We summarize the contributions of this paper below:

1. We propose a method for automatically learning an effective strategy for
variable-clustering for the Octagon analysis from a given codebase. The
method infers a function that decides, for a program P and a pair of vari-
ables (x, y) in P , whether tracking the relationship between x and y is
important. The learned strategy uses this function to cluster variables in
a given program.

2. We show how to automatically generate labeled data from a given codebase
that are needed for learning. Our key idea is to generate such data using
the impact pre-analysis for Octagon from [16]. This use of the pre-analysis
means that our learning step is just the process of finding a further ap-
proximation of the pre-analysis, which avoids expensive computations of
the pre-analysis but keeps its important estimations.

3. We experimentally show the effectiveness of our learning method using
a realistic static analyzer for full C and open source benchmarks. Our
variant of Octagon with the learned strategy is 33x faster than the selective
relational analysis based on the impact pre-analysis [16] while increasing
false alarms by only 2%.

4. We show that the general idea behind our method is also applicable to
learning context-sensitivity of interval analysis.

This paper is an extended version of [6]. The major extension is the addi-
tion of a new instance for context-sensitivity; we give detailed descriptions on
applying our method to context-sensitive interval analysis (Sections 5 and 6)
and provide experimental results (Section 7).

4 Kihong Heo et al.

1 int a = b;

2 int c = input(); // User input

3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1

5 assert (i < c); // Query 2

6 }

Fig. 1 Example Program

2 Informal Explanation

We informally explain our approach with a partially relational Octagon
analysis using the program in Figure 1. The program contains two queries
about the relationships between i and variables a, b inside the loop. The first
query i < a is always true because the loop condition ensures i < b and
variables a and b have the same value throughout the loop. The second query
i < c, on the other hand, may become false because c is set to an unknown
input at line 2.

2.1 Octagon Analysis with Variable Clustering

The Octagon analysis [9] discovers program invariants strong enough to prove
the first query in our example. At each program point it infers an invariant of
the form (∧

ij

Lij ≤ xj + xi ≤ Uij
)
∧
(∧
ij

L′ij ≤ xj − xi ≤ U ′ij
)

for Lij , L
′
ij ∈ Z ∪ {−∞} and Uij , U

′
ij ∈ Z ∪ {∞}. In particular, at the first

query of our program, the analysis infers the following invariant, which we
present in the usual matrix form:

a −a b −b c −c i −i
a 0 ∞ 0 ∞ ∞ ∞ −1 ∞
−a ∞ 0 ∞ 0 ∞ ∞ ∞ ∞
b 0 ∞ 0 ∞ ∞ ∞ −1 ∞
−b ∞ 0 ∞ 0 ∞ ∞ ∞ ∞
c ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
−c ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞
i ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
−i ∞ −1 ∞ −1 ∞ ∞ ∞ 0

(1)

The ij-th entry mij of this matrix means an upper bound ej−ei ≤ mij , where
ej and ei are expressions associated with the j-th column and the i-th row
of the matrix respectively and they are variables with or without the minus
sign. The matrix records −1 and ∞ as upper bounds for i − a and i − c,
respectively. Note that these bounds imply the first query, but not the second.

In practice the Octagon analysis is rarely used without further optimiza-
tion, because it usually spends a large amount of computational resources for
discovering unnecessary relationships between program variables, which do

Learning Analysis Strategies for Octagon and Context Sensitivity 5

not contribute to proving given queries. In our example, the analysis tracks
the relationship between c and i, although it does not help prove any of the
queries.

A standard approach for addressing this inefficiency is to form subsets
of variables, called variable clusters or clusters. According to a pre-defined
clustering strategy, the analysis tracks the relationships between only those
variables within the same cluster, not across clusters. In our example, this
approach would form two clusters {a, b, i} and {c} and prevent the Octagon
analysis from tracking the unnecessary relationships between c and the other
variables. The success of the approach lies in finding a good strategy that is
able to find effective clusters for a given program. This is possible as demon-
strated in the several previous work [16,28,1], but it is highly nontrivial and
often requires a large amount of trial and error of analysis designers.

Our goal is to develop a method for automatically learning a good variable-
clustering strategy for a target class of programs. By “a target class of pro-
grams”, we mean that training and test programs are not totally different
from the viewpoint of a particular program analyzer. For instance, both train-
ing and test programs may be GNU open-source programs written in C, as in
our experiments, so that they follow some common programming styles. This
assumption makes learning possible. The literature of machine learning often
makes a similar assumption that training and test data are drawn from the
same but unknown distribution in terms of general features.

This automatic learning happens offline with a collection of typical sample
programs from the target class, and the learned strategy is later applied to any
programs in the class, most of which are not used during learning. We want
the learned strategy to form relatively-small variable clusters so as to lower
the analysis cost and, at the same time, to put a pair of variables in the same
cluster if tracking their relationship by Octagon is important for proving given
queries. For instance, such a strategy would cluster variables of our example
program into two groups {a, b, i} and {c}, and make Octagon compute the
following smaller matrix at the first query:

a −a b −b i −i
a 0 ∞ 0 ∞ −1 ∞
−a ∞ 0 ∞ 0 ∞ ∞
b 0 ∞ 0 ∞ −1 ∞
−b ∞ ∞ ∞ 0 ∞ ∞
i ∞ ∞ ∞ ∞ 0 ∞
−i ∞ −1 ∞ −1 ∞ ∞

(2)

2.2 Automatic Learning of a Variable-Clustering Strategy

In this paper we will present a method for learning a variable-clustering strat-
egy. Using a given codebase, it infers a function F that maps a tuple (P, (x, y))
of a program P and variables x, y in P to ⊕ and 	. The output ⊕ here means
that tracking the relationship between x and y is likely to be important for
proving queries. The inferred F guides our variant of the Octagon analysis.

6 Kihong Heo et al.

Given a program P , our analysis applies F to every pair of variables in P ,
and computes the finest partition of variables that puts every pair (x, y) with
the ⊕ mark in the same group. Then, it analyzes the program P by tracking
relationships between variables within each group in the partition, but not
across groups.

Our method for learning takes a codebase that consists of typical programs
in the intended application of the analysis. Then, it automatically synthesizes
the above function F in two steps. First, it generates labeled data automat-
ically from programs in the codebase by using the impact pre-analysis for
Octagon from our previous work [16]. This is the most salient aspect of our
approach; in a similar supervised-learning task, such labeled data are typically
constructed manually, and avoiding this expensive manual labelling process is
considered a big challenge for supervised learning. Next, our approach converts
labeled data to boolean vectors marked with ⊕ or 	, and runs an off-the-shelf
supervised learning algorithm to infer a classifier, which is used to define F .

Note that The full Octagon analysis is not appropriate for labeling. In our
experiments, it scales only up to 13KLOC and generates 1 million labeled
variable pairs for training data. By contrast, the pre-analysis scales up to
110KLOC and generates 258 million labeled variable pairs for training data.
Using the former (much smaller) training data results in a poor classifier that
selects too many variable pairs, and as a result, the resulting partial Octagon
analysis does not scales beyond 50KLOC. Note that our pre-analysis is suf-
ficiently precise; it can select 98% of queries that are provable by the full
Octagon analysis [16] on average.

Automatic Generation of Labeled Data Labeled data in our case are a collec-
tion of triples (P, (x, y), L) where P is a program, (x, y) is a pair of variables in
P , and L ∈ {⊕,	} is a label that indicates whether tracking the relationship
between x and y is important. We generate such labeled data automatically
from the programs P1, . . . , PN in the given codebase.

The key idea is to use the impact pre-analysis for Octagon [16], and to
convert the results of this pre-analysis to labeled data. Just like the Octagon
analysis, this pre-analysis tracks the relationships between variables, but it
aggressively abstracts any numerical information so as to achieve better scal-
ability than Octagon. The goal of the pre-analysis is to identify, as much as
possible, the case that Octagon would give a precise bound for ±x± y, with-
out running Octagon itself. As in Octagon, the pre-analysis computes a matrix
with rows and columns for variables with or without the minus sign, but this
matrix m] contains F or >, instead of any numerical values. For instance,
when applied to our example program, the pre-analysis would infer the follow-
ing matrix at the first query:

Learning Analysis Strategies for Octagon and Context Sensitivity 7

a −a b −b c −c i −i
a F > F > > > F >
−a > F > F > > > >
b F > F > > > F >
−b > F > F > > > >
c > > > > F > > >
−c > > > > > F > >
i > > > > > > F >
−i > F > F > > > F

(3)

Each entry of this matrix stores the pre-analysis’s (highly precise on the pos-
itive side) prediction on whether Octagon would put a finite upper bound at
the corresponding entry of its matrix at the same program point. F means
likely, and > unlikely. For instance, the above matrix contains F for the en-
tries for i− b and b− a, and this means that Octagon is likely to infer finite
(thus informative) upper bounds of i − b and b − a. In fact, this predication
is correct because the actual upper bounds inferred by Octagon are −1 and 0,
as can be seen in (1).

We convert the results of the impact pre-analysis to labeled data as follows.
For every program P in the given codebase, we first collect all queries Q =
{q1, . . . , qk} that express legal array accesses or the success of assert statements
in terms of upper bounds on ±x±y for some variables x, y. Next, we filter out
queries qi ∈ Q such that the upper bounds associated with qi are not predicted
to be finite by the pre-analysis. Intuitively, the remaining queries are the ones
that are likely to be proved by Octagon according to the prediction of the
pre-analysis. Then, for all remaining queries q′1, . . . , q

′
l, we collect the results

m]
1, . . . ,m

]
l of the pre-analysis at these queries, and generate the following

labeled data:

DP = {(P, (x, y), L) |
L = ⊕ ⇐⇒ at least one of the entries of some mi for ±x± y has F}.

Notice that we mark (x, y) with ⊕ if tracking the relationship between x and
y is useful for some query q′i. An obvious alternative is to replace some by
all, but we found that this alternative led to the worse performance in our
experiments.1 This generation process is applied for all programs P1, . . . , PN
in the codebase, and results in the following labeled data: D =

⋃
1≤i≤N DPi . In

our example program, if the results of the pre-analysis at both queries are the
same matrix in (3), our approach picks only the first matrix because the pre-
analysis predicts a finite upper bound only for the first query, and it produces
the following labeled data from the first matrix:

{(P, t,⊕) | t ∈ T} ∪ {(P, t,) | t 6∈ T}

where T = {(a, b), (b, a), (a, i), (i, a), (b, i), (i, b), (a, a), (b, b), (c, c), (i, i)}.
1 Because the pre-analysis uses F cautiously, only a small portion of variable pairs is

marked with ⊕ (that is, 5864/258, 165, 546) in our experiments. Replacing “some” by “all”
reduces this portion by half (2230/258, 165, 546) and makes the learning task more difficult.

8 Kihong Heo et al.

1 int id1(int x){ return x; }

2 int id2(int x){ return id1(x); }

3 int id3(int x){ return x; }

4 int id4(int x){ return id3(x); }

5

6 void main(){

7 a = id2(1);

8 b = id2(input());

9 assert(a > 0); // Query 1

10 assert(b > 0); // Query 2

11

12 c = id4(input());

13 d = id4(input());

14 assert(c > 0); // Query 3

15 assert(d > 0); // Query 4

16 }

Fig. 2 Example Program

Application of an Off-the-shelf Classification Algorithm Once we gen-
erate labeled data D, we represent each triple in D as a vector of {0, 1} la-
beled with ⊕ or 	, and apply an off-the-shelf classification algorithm, such as
decision-tree inference [10].

The vector representation of each triple in D is based on a set of so called
features, which are syntactic or semantic properties of a variable pair (x, y)
under a program P . Formally, a feature f maps such (P, (x, y)) to 0 or 1. For
instance, f may check whether the variables x and y appear together in an
assignment of the form x = y + c in P , or it may test whether x or y is a
global variable. Table 1 lists all the features that we designed and used for our
variant of the Octagon analysis. Let us denote these features and results of
applying them using the following symbols:

f = {f1, . . . , fm}, f(P, (x, y)) =
(
f1(P, (x, y)), . . . , fm(P, (x, y))

)
∈ {0, 1}m.

The vector representation of triples in D is the following set:

V = {(f(P, (x, y)), L) | (P, (x, y), L) ∈ D} ∈ ℘({0, 1}m × {⊕,	})

We apply an off-the-self classification algorithm to the set. In our experiments,
the algorithm for learning a decision tree gave the best classifier for our variant
of the Octagon analysis.

2.3 Application to Context-sensitivity

The general principle of our learning approach is also applicable to other
partially sensitive analyses. Figure 2 shows an example program that requires
a context-sensitive analysis. The program contains four queries; the first query
always holds but the others are not always true because of the unknown inputs.

If we use the Interval analysis for the example program, both of context-
insensitive and uniformly context-sensitive analysis are not an appropriate

Learning Analysis Strategies for Octagon and Context Sensitivity 9

choice. The context-insensitive analysis cannot prove any queries. Since the
analysis merges all inputs of each function (id1 and id2), both x and y at
line 1 and 3 have [−∞,+∞]. An uniformly context-sensitive analysis such as
2-CFA [22] can prove the first query by differentiating all the calling contexts
separately:

2 · 7 2 · 8 4 · 12 4 · 13

However, a uniformly context-sensitive analysis is not cost-effective. The context-
sensitivity on id3 and id4 does not help to prove any query in the example.

Instead, our learning method derives an effective strategy for partial context-
sensitivity. Like the partial Octagon case, we also infer a function F that maps
a tuple (P,ψ) of a program P and function ψ in P to ⊕ and 	. ⊕ means that
context sensitivity on the function is likely to be important for proving queries.
According to the result of F , we derive a partial context-sensitivity. For ex-
ample, the learned strategy would construct the following calling contexts for
the first query in the example:

2 · 7 2 · 8 all the other contexts

Likewise, we automatically generate labeled data form the given codebase
and the fully context-sensitive impact pre-analysis for context-sensitivity [16].
The pre-analysis approximates the interval analysis using the following ab-
stract domain:

{⊥} ∪ (Var → {>,F})

where F means positive intervals (i.e., [l, u] where 0 ≤ l ≤ u) and > means
all intervals. For example, the following table shows the summary of the main
analysis and the pre-analysis on the example program. The second and third
columns represent the return values of each analysis following the correspond-
ing call chains:

Context Main analysis Pre-analysis
2 · 7 [1, 1] F
2 · 8 [−∞,+∞] >
4 · 12 [−∞,+∞] >
4 · 13 [−∞,+∞] >

The pre-analysis precisely estimates the fact that the main analysis can have
the precise result along the calling context 2 · 7. From the pre-analysis result,
we generate labeled data.

DP = {(P,ψ, L) | L = ⊕ ⇐⇒ ψ is on a dependency path of a query that has F}

For example, if a dependency path for a selected query looks as follows:

query
f h i

g

• • •
•

Then function f, g, h, and i are positive examples. However, if a slice involves
a recursive call as follows:

10 Kihong Heo et al.

query
f g h
• • •

we exclude the query since otherwise, we need infinitely many different calling
contexts.

After we generate labeled data, we follow the same process in the partial
Octagon case in Section 2.2. We represent each tuple in the training data as
a feature vector and derive a classifier using an off-the-shelf machine learning
algorithm.

3 Octagon Analysis with Variable Clustering

In this section, we describe a variant of the Octagon analysis that takes not
just a program to be analyzed but also clusters of variables in the program.
Such clusters are computed according to some strategy before the analysis
is run. Given a program and variable clusters, this variant Octagon analysis
infers relationships between variables within the same cluster but not across
different clusters. Section 4 presents our method for automatically learning a
good strategy for forming such variable clusters.

3.1 Programs

A program is represented by a control-flow graph (C,→), where C is the set
of program points and (→) ⊆ C×C denotes the control flows of the program.
Let Varn = {x1, . . . , xn} be the set of variables. Each program point c ∈ C
has a primitive command working with these variables. When presenting the
formal setting and our results, we mostly assume the following collection of
simple primitive commands:

cmd ::= x = k | x = y + k | x = ?

where x, y are program variables, k ∈ Z is an integer, and x = ? is an assign-
ment of some nondeterministically-chosen integer to x. The Octagon analysis
is able to handle the first two kinds of commands precisely. The last command
is usually an outcome of a preprocessor that replaces a complex assignment
such as non-linear assignment x = y ∗ y + 1 (which cannot be analyzed accu-
rately by the Octagon analysis) by this overapproximating non-deterministic
assignment.

3.2 Octagon Analysis

We briefly review the Octagon analysis in [9]. Let Varn = {x1, . . . , xn} be the
set of variables that appear in a program to be analyzed. The analysis aims at

Learning Analysis Strategies for Octagon and Context Sensitivity 11

Jxi = kKm = m′ when m′pq =


−2k p = 2i− 1 ∧ q = 2i
2k p = 2i ∧ q = 2i− 1(
Jxi = ?Km

)
pq

otherwise

(
Jxi = xi + kKm

)
pq

=


mpq − k (p = 2i− 1 ∧ q 6∈ {2i− 1, 2i}) ∨ (p 6∈ {2i− 1, 2i} ∧ q = 2i)
mpq + k (p = 2i ∧ q 6∈ {2i− 1, 2i}) ∨ (p 6∈ {2i− 1, 2i} ∧ q = 2i− 1)
mpq − 2k p = 2i− 1 ∧ q = 2i
mpq + 2k p = 2i ∧ q = 2i− 1
mpq otherwise

Jxi = xj + kKm = m′ when m′pq =


−k p = 2i− 1 ∧ q = 2j − 1
−k p = 2j ∧ q = 2i
k p = 2j − 1 ∧ q = 2i− 1
k p = 2i ∧ q = 2j(
Jxi = ?Km

)
pq

otherwise

Jxi =?Km = ⊥ when m• = ⊥

Jxi =?Km = m′ when m• 6= ⊥ and m′pq =


∞ p ∈ {2i− 1, 2i} ∧ q 6∈ {2i− 1, 2i}
∞ p 6∈ {2i− 1, 2i} ∧ q ∈ {2i− 1, 2i}
0 p = q = 2i− 1 ∨ p = q = 2i
(m•)pq otherwise

Fig. 3 Abstract semantics of some primitive commands in the Octagon analysis. We show
the case that the input m is not ⊥; the abstract semantics always maps ⊥ to ⊥.

finding the upper and lower bounds of expressions of the forms xi, xi+xj and
xi − xj for variables xi, xj ∈ Varn. The analysis represents these bounds as a
(2n × 2n) matrix m of values in Z∞ = Z ∪ {∞}, which means the following
constraint: ∧

(1≤i,j≤n)

∧
(k,l∈{0,1})

((−1)l+1xj − (−1)k+1xi) ≤ m(2i−k)(2j−l)

The abstract domain O of the Octagon analysis consists of all those matrices
and ⊥, and uses the following pointwise order: for m,m′ ∈ O,

m v m′ ⇐⇒ (m = ⊥) ∨ (m 6= ⊥ ∧m′ 6= ⊥ ∧ ∀1 ≤ i, j ≤ 2n. (mij ≤ m′ij)).

This domain is a complete lattice (O,v,⊥,>,t,u) where > is the matrix
containing only ∞ and t and u are defined pointwise. The details of the
lattice structure can be found in [9].

Usually multiple abstract elements of O mean constraints with the same
set of solutions. If we fix a set S of solutions and collect in the set M all the
abstract elements with S as their solutions, the set M always contains the
least element according to the v order. There is a cubic-time algorithm for
computing this least element from any m ∈ M . We write m• to denote the
result of this algorithm, and call it strong closure of m.

The abstract semantics of primitive commands JcmdK : O → O is defined
in Figure 3. The effects of the first two assignments in the concrete semantics
can be tracked precisely using abstract elements of Octagon. The abstract
semantics of these assignments do such tracking. Jxi = ?Km in the last case

12 Kihong Heo et al.

computes the strong closure of m and forgets any bounds involving xi in the
resulting abstract element m•. The analysis computes a pre-fixpoint of the
semantic function F : (C → O) → (C → O) (i.e., XI with F (XI)(c) v XI(c)
for all c ∈ C):

F (X)(c) = Jcmd(c)K(
⊔
c′→c

X(c′))

where cmd(c) is the primitive command associated with the program point c.

3.3 Variable Clustering and Partial Octagon Analysis

We use a program analysis that performs the Octagon analysis only partially.
This variant of Octagon is similar to those in [9,16]. This partial Octagon
analysis takes a collection Π of clusters of variables, which are subsets π of
variables in Varn such that

⋃
π∈Π π = Varn. Each π ∈ Π specifies a variable

cluster and instructs the analysis to track relationships between variables in π.
Given such a collection Π, the partial Octagon analysis analyzes the program
using the complete lattice (OΠ ,vΠ ,⊥Π ,>Π ,tΠ ,uΠ) where

OΠ =
∏
π∈Π

Oπ (Oπ is the lattice of Octagon for variables in π).

That is, OΠ consists of families {mπ}π∈Π such that each mπ is an abstract
element of Octagon used for variables in π, and all lattice operations of OΠ are
the pointwise extensions of those of Octagon. For the example in Section 2, if
we use Π = {{a, b, c, i}}, the partial Octagon analysis uses the same domain
as Octagon’s. But if Π = {{a, b, i}, {c}}, the analysis uses the product of two
smaller abstract domains, one for {a, b, i} and the other for {c}.

The partial Octagon analysis computes a pre-fixpoint of the following FΠ :

FΠ :(C→ OΠ)→ (C→ OΠ)

FΠ(X)(c) = Jcmd(c)KΠ(
⊔
c′→c

X(c′)).

Here the abstract semantics Jcmd(c)KΠ : OΠ → OΠ of the command c is
defined in terms of Octagon’s:

(Jxi = ?KΠpo)π =

{
Jxi = ?K(poπ) xi ∈ π
poπ otherwise

(Jxi = kKΠpo)π =

{
Jxi = kK(poπ) xi ∈ π
poπ otherwise

(Jxi = xj + kKΠpo)π =

{
Jxi = xj + kK(poπ) xi, xj ∈ π
Jxi = ?K(poπ) otherwise

The abstract semantics of a command updates the component of an input
abstract state for a cluster π if the command changes any variable in the
cluster; otherwise, it keeps the component. The update is done according to

Learning Analysis Strategies for Octagon and Context Sensitivity 13

the abstract semantics of Octagon. Notice that the abstract semantics of xi =
xj + k does not track the relationship xj − xi = k in the π component when
xi ∈ π but xj 6∈ π. Giving up such relationships makes this partial analysis
perform faster than the original Octagon analysis.

4 Learning a Strategy for Clustering Variables

The success of the partial Octagon analysis lies in choosing good clusters
of variables for a given program. Ideally each cluster of variable should be
relatively small, but if tracking the relationship between variables xi and xj
is important, some cluster should contain both xi and xj . In this section,
we present a method for learning a strategy that chooses such clusters. Our
method takes as input a collection of programs, which reflects a typical usage
scenario of the partial Octagon analysis. It then automatically learns a strategy
from this collection.

In the section we assume that our method is given {P1, . . . , PN}, and we
let

P = {(P1, Q1), . . . , (PN , QN)},

where Qi means a set of queries in Pi. It consists of pairs (c, p) of a program
point c of Pi and a predicate p on variables of Pi, where the predicate expresses
an upper bound on variables or their differences, such as xi−xj ≤ 1. Another
notation that we adopt is VarP for each program P , which means the set of
variables appearing in P .

4.1 Automatic Generation of Labeled Data

The first step of our method is to generate labeled data from the given collec-
tion P of programs and queries. In theory the generation of this labeled data
can be done by running the full Octagon analysis. For every (Pi, Qi) in P, we
run the Octagon analysis for Pi, and collect queries in Qi that are proved by
the analysis. Then, we label a pair of variable (xj , xk) in Pi with ⊕ if (i) a
nontrivial2 upper or lower bound (xi, xk) is computed by the analysis at some
program point c in Pi and (ii) the proof of some query by the analysis depends
on this nontrivial upper bound. Otherwise, we label the pair with 	. The main
problem with this approach is that we cannot analyze all the programs in P
with Octagon because of the scalability issue of Octagon.

In order to lessen this scalability issue, we instead run the impact pre-
analysis for Octagon from our previous work [16], and convert its results to
labeled data. Although this pre-analysis is not as cheap as the Interval analysis,
it scales far better than Octagon and enables us to generate labeled data from
a wide range of programs. Our learning method then uses the generated data
to find a strategy for clustering variables. The found strategy can be viewed

2 By nontrivial, we mean finite bounds that are neither ∞ nor −∞.

14 Kihong Heo et al.

as an approximation of this pre-analysis that scales as well as the Interval
analysis.

Impact Pre-analysis We review the impact pre-analysis from [16], which aims
at quickly predicting the results of running the Octagon analysis on a given
program P . Let n = |VarP |, the number of variables in P . At each program
point c of P , the pre-analysis computes a (2n× 2n) matrix m] with entries in
{F,>}. Intuitively, such a matrix m] records which entries of the matrix m
computed by Octagon are likely to contain nontrivial bounds. The pre-analysis
over-approximates the main analysis. As a result, if the ij-th entry of m] is F,
the ij-th entry of m is always equal to non-∞ according to the prediction of
the pre-analysis. The pre-analysis does not make similar prediction for entries
of m] with >. Such entries should be understood as the absence of information.

The pre-analysis uses a complete lattice (O],v],⊥],>],t],u]) where O]
consists of (2n×2n) matrices of values in {F,>}, the order v] is the pointwise
extension of the total order F v >, and all the other lattice operations are
defined pointwise. There exists a Galois connection between The domain of
sets of octagons ℘(O) and O]. ℘(O) is ∪-complete lattice:

(℘(O),⊆, ∅,O,∪,∩)

Abstract state m] ∈ O] denotes a set of octagons that is characterized by the
following Galois connection:

℘(O) −−−→←−−−α
γ

O]

(
α(M)

)
ij

=

{
F if +∞ 6∈ {mij | m ∈M \ {⊥}},
> otherwise;

γ(m]) = {⊥} ∪ {m | m 6= ⊥ ∧ ∀i, j. (m]
ij = F =⇒ mij 6= +∞)}.

Lemma 1 (Galois connection) (α, γ) forms a Galois connection:

∀M ∈ ℘(O),m] ∈ O]. α(M) v m] ⇐⇒ M ⊆ γ(m]).

Proof It is enough to prove the following:

α(M) v m] ⇐⇒ M \ {⊥} ⊆ γ(m]) \ {⊥}.

Learning Analysis Strategies for Octagon and Context Sensitivity 15

Jxi = kK]m] = m]1 when (m]1)pq =


F p = 2i− 1 ∧ q = 2i
F p = 2i ∧ q = 2i− 1(
Jxi = ?K]m]

)
pq

otherwise

(
Jxi = xi + k>0K]m]

)
pq

=


F (p = 2i− 1 ∧ q 6∈ {2i− 1, 2i}) ∨ (p 6∈ {2i− 1, 2i} ∧ q = 2i)
> (p = 2i ∧ q 6∈ {2i− 1, 2i}) ∨ (p 6∈ {2i− 1, 2i} ∧ q = 2i− 1)
F p = 2i− 1 ∧ q = 2i
> p = 2i ∧ q = 2i− 1

m]pq otherwise

Jxi = xi + k≤0K]m] = m]

Jxi = xj + kK]m] = m]1 when (m]1)pq =


F p = 2i− 1 ∧ q = 2j − 1
F p = 2j ∧ q = 2i
F p = 2j − 1 ∧ q = 2i− 1
F p = 2i ∧ q = 2j(
Jxi = ?K]m]

)
pq

otherwise

Jxi =?K]m] = m]1 when (m]1)pq =


> p ∈ {2i− 1, 2i} ∧ q 6∈ {2i− 1, 2i}
> p 6∈ {2i− 1, 2i} ∧ q ∈ {2i− 1, 2i}
F p = q = 2i− 1 ∨ p = q = 2i
((m])•)pq otherwise

Fig. 4 Abstract semantics of some primitive commands in the impact pre-analysis. k>0

and k≤0 present positive and non-positive integers, respectively.

The following derivation shows this equivalence.

α(M) v m]

⇐⇒ ∀i, j.
(
(α(M))ij v (m])ij

)
⇐⇒ ∀i, j.

(
(m])ij = F =⇒ (α(M))ij = F

)
⇐⇒ ∀i, j.

(
(m])ij = F =⇒ +∞ 6∈ {mij | m ∈M \ {⊥}}

)
⇐⇒ ∀i, j.

(
(m])ij = F =⇒ ∀m ∈ (M \ {⊥}).mij 6= +∞

)
⇐⇒ ∀i, j. ∀m ∈ (M \ {⊥}).

(
(m])ij = F =⇒ mij 6= +∞

)
⇐⇒ ∀m ∈ (M \ {⊥}).∀i, j.

(
(m])ij = F =⇒ mij 6= +∞

)
⇐⇒ ∀m ∈ (M \ {⊥}).m 6= ⊥ ∧ ∀i, j.

(
(m])ij = F =⇒ mij 6= +∞

)
⇐⇒ ∀m ∈ (M \ {⊥}).m ∈ (γ(m]) \ {⊥})
⇐⇒ (M \ {⊥}) ⊆ (γ(m]) \ {⊥}).

The pre-analysis uses the abstract semantics JcmdK] : O] → O] that is
derived from this Galois connection and the abstract semantics of the same
command in Octagon (Figure 3). Figure 4 shows the results of this deriva-
tion. One non-trivial case is xi = xi + k>0. The pre-analysis conservatively
approximates the upper bound of xi−xj to infinity (i.e., >) as xi increases by
xi = xi + k>0. On the other hand, the upper bound of xj − xi is computed as
F, because it is always finite in the Octagon analysis. Our choice on the upper
bound of xi − xj (> rather than F) is because of a practical issue. Though
the pre-analysis is sound with respect to the least fixed point of the Octagon

16 Kihong Heo et al.

analysis, a widening operator is used to compute an over-approximation of it
in practice. Consider the following code:

x = y;

while(*){

assert(x - y <= 0);

x = x + 1;

}

In this example, the Octagon analysis with the standard widening computes
x − y ≤ +∞ inside of the loop. To soundly handle such common cases, we
defined the semantics for xi = xi + k>0 approximately to produce >. If we
defined the semantics to produce F, the pre-analysis would select the query
in the example program. In our experience, this alternative selects too many
unprovable queries in practice [16].

Significance of Impact Pre-analysis A good way to see the significance is to re-
call the use of the so-called collecting semantics in abstract interpretation and
to remember how the collecting semantics helps relate the concrete semantics
and the abstract semantics of a program analysis. The collecting semantics
models the concrete behavior of each program statement as a transformer on
sets of states. It is used even when all program statements are deterministic
and can be interpreted as (partial) functions on states, as commonly done in
the work on denotational semantics. This seemingly unnecessary use of the
collecting semantics comes from the fact that this semantics lets us formalize
the notion of abstraction in terms of subset relation easily, describe the behav-
ior of a program analysis by means of concretization, and relate the concrete
semantics and the analysis.

The reason that we use the power-set domain of matrices is nearly identical.
Although the Octagon analysis never generates a set of matrices, it can be
reinterpreted in a version of collecting semantics where Octagon associates a
set of matrices to each program point and its abstract transfer functions map
sets of matrices to other sets. Our pre-analysis approximates this collecting
semantics of Octagon, and its behavior and approximation can be described
using operations on sets of matrices and Galois connection. The goal of the pre-
analysis is to compute (a representation of) a set of matrices at each program
point that covers the outcome of the Octagon analysis at the point. Thus, a
matrix with ∞ should appear in the computed set if the matrix is the result
of the Octagon at p. Contrapositively, if our pre-analysis computes the upper
bound of x− y as F at a program point so that no matrices in the computed
set contain ∞ in the (x, y) entry, the Octagon analysis infers x − y ≤ n for
some n 6= +∞. We want to point out that sets of matrices should not be
understood in terms of concrete sets of states obtained by the concretization
of the Octagon analysis: even when two sets of matrices mean the same set
of states via this concretization, they may describe the completely different
behaviors of the Octagon analysis.

Learning Analysis Strategies for Octagon and Context Sensitivity 17

Automatic Labeling For every (Pi, Qi) ∈ P, we run the pre-analysis on Pi,
and get an analysis result Xi that maps each program point in Pi to a matrix
in O]. From such Xi, we generate labeled data D as follows:

Q′i = {c | ∃p. (c, p) ∈ Qi ∧ p is a predicate about the upper bound of xk − xj
∧Xi(c) 6= ⊥ ∧Xi(c)jk = F},

D =
⋃

1≤i≤N

{(Pi, (xj , xk), L) | L = ⊕ ⇐⇒
∃c ∈ Q′i.∃l,m ∈ {0, 1}. Xi(c)(2j−l)(2k−m) = F}.

Notice that we label (xj , xk) with ⊕ if tracking their relationship is predicted
to be useful for some query according to the results of the pre-analysis.

4.2 Features and Classifier

The second step of our method is to represent labeled dataD as a set of boolean
vectors marked with ⊕ or 	, and to run an off-the-shelf algorithm for inferring
a classifier with this set of labeled vectors. The vector representation assumes
a collection of features f = {f1, . . . , fm}, each of which maps a pair (P, (x, y))
of program P and variable pair (x, y) to 0 or 1. The vector representation is
the set V defined as follows:

f(P, (x, y)) =
(
f1(P, (x, y)), . . . , fm(P, (x, y))

)
∈ {0, 1}m,

V = {(f(P, (x, y)), L) | (P, (x, y), L) ∈ D} ∈ ℘({0, 1}m × {⊕,	}).

An off-the-shelf algorithm computes a binary classifier C from V:

C : {0, 1}m → {⊕,	}.

In our experiments, V has significantly more vectors marked with 	 than those
marked with ⊕. We found that the algorithm for inferring a decision tree [10]
worked the best for our V

Table 1 shows the features that we developed for the Octagon analysis and
used in our experiments. These features work for real C programs (not just
those in the small language that we have used so far in the paper), and they are
all symmetric in the sense that fi(P, (x, y)) = fi(P, (y, x)). Features 1–6 detect
good situations where the Octagon analysis can track the relationship between
variables precisely. For example, f1(P, (x, y)) = 1 when x and y appear in an
assignment x = y+k or y = x+k for some constant k in the program P . Note
that the abstract semantics of these commands in Octagon do not lose any
information. The next features 7–11, on the other hand, detect bad situations
where the Octagon analysis cannot track the relationship between variables
precisely. For example, f7(P, (x, y)) = 1 when x or y gets multiplied by a con-
stant different from 1 in a command of P , as in the assignments y = x ∗ 2
and x = y ∗ 2. Notice that these assignments set up relationships between x
and y that can be expressed only approximately by Octagon. We have found

18 Kihong Heo et al.

i Description of feature fi(P, (x, y)). k represents a constant.
1 P contains an assignment x = y + k or y = x+ k.
2 P contains a guard x ≤ y + k or y ≤ x+ k.
3 P contains a malloc of the form x = malloc(y + k) or y = malloc(x+ k).
4 P contains a command x = strlen(y) or y = strlen(x).
5 P sets x to strlen(y) or y to strlen(x) indirectly, as in t = strlen(y);x = t.
6 P contains an expression of the form x[y + k] or y[x+ k].
7 P contains an expression that multiplies x or y by a constant different from 1.
8 P contains an expression that multiplies x or y by a variable.
9 P contains an expression that divides x or y by a variable.
10 P contains an expression that has x or y as an operand of bitwise operations.
11 P contains an assignment that updates x or y using non-Octagonal expressions.
12 x and y are has the same name in different scopes.
13 x and y are both global variables in P .
14 x or y is a global variable in P .
15 x or y is a field of a structure in P .
16 x and y represent sizes of some arrays in P .
17 x and y are temporary variables in P .
18 x or y is a local variable of a recursive function in P .
19 x or y is tested for the equality with ±1 in P .
20 x and y represent sizes of some global arrays in P .
21 x or y stores the result of a library call in P .
22 x and y are local variables of different functions in P .
23 {x, y} consists of a local var. and the size of a local array in different fun. in P .
24 {x, y} consists of a local var. and a temporary var. in different functions in P .
25 {x, y} consists of a global var. and the size of a local array in P .
26 {x, y} contains a temporary var. and the size of a local array in P .
27 {x, y} consists of local and global variables not accessed by the same fun. in P .
28 x or y is a self-updating global var. in P .
29 The flow-insensitive analysis of P results in a finite interval for x or y.
30 x or y is the size of a constant string in P .

Table 1 Features for relations of two variables.

that detecting both good and bad situations is important for learning an ef-
fective variable-clustering strategy. The remaining features (12–30) describe
various syntactic and semantics properties about program variables that often
appear in typical C programs. For the semantic features, we use the results
of a flow-insensitive analysis that quickly computes approximate information
about pointer aliasing and ranges of numerical variables.

4.3 Strategy for Clustering Variables

The last step is to define a strategy that takes a program P , especially one not
seen during learning, and clusters variables in P . Assume that a program P is
given and let VarP be the set of variables in P . Using features f and inferred
classifier C, our strategy computes the finest partition of VarP ,

Π = {π1, . . . , πk} ⊆ ℘(VarP),

such that for all (x, y) ∈ VarP ×VarP , if we let F = C ◦ f , then

F(P, (x, y)) = ⊕ =⇒ x, y ∈ πi for some πi ∈ Π.

Learning Analysis Strategies for Octagon and Context Sensitivity 19

The partition Π is the clustering of variables that will be used by the partial
Octagon analysis subsequently. Notice that although the classifier does not
indicate the importance of tracking the relationship between some variables
x and z (i.e., F(P, (x, z)) =), Π may put x and z in the same π ∈ Π, if
F(P, (x, y)) = F(P, (y, z)) = ⊕ for some y. Effectively, our construction of Π
takes the transitive closure of the raw output of the classifier on variables. In
our experiments, taking this transitive closure was crucial for achieving the
desired precision of the partial Octagon analysis.

5 Partially Context-sensitive Analysis with Context Selector

In this section, we describe a selective context-sensitive analysis with the in-
terval domain [16]. In this analysis, the degree of context-sensitivity is char-
acterized by a context selector, which will be learned from data in Section
6.

5.1 Programs

We assume that a program is represented by a control-flow graph (C,→,F)
where C is the set of program points, (→) ⊆ C×C denotes the control flows of
the program and F is the set of procedure names. A node c ∈ C is associated
with one of the following primitive commands:

cmd ::= skip | x := e

where e is an arithmetic expression:

e→ n | x | e+ e | e− e

where n ∈ Z is an integer and x is a program variable. C consists of five disjoint
sets:

C = Ce (Entry Nodes)
] Cx (Exit Nodes)
] Cc (Call Nodes)
] Cr (Return Nodes)
] Ci (Internal Nodes)

Each procedure f ∈ F has only one entry and one exit node. Given a node
c ∈ C, fid(c) denotes the procedure enclosing the node. We denote the set of
call nodes by Cc ⊆ C and the set of program variables by Var .

20 Kihong Heo et al.

5.2 Interval Analysis

The abstract domain S for the interval analysis is defined as follows:

S = Var → I

Abstract domain I is the standard interval domain. The domain for abstract
states is a map from variables to intervals.

The abstract semantics of primitive commands JcmdK : S → S is defined
as follows:

JskipK(s) = s

Jx := eK(s) =

{
s[x 7→ JeK(s)] (s 6= ⊥)
⊥ (s = ⊥)

where JeK is the abstract evaluation of the expression e with interval values:
for s ∈ S with s 6= ⊥,

JnK(s) = [n, n]
JxK(s) = s(x)

Je1 + e2K(s) = Je1K(s) + Je2K(s)
Je1 − e2K(s) = Je1K(s)− Je2K(s).

5.3 Context Selector and Partial Context-sensitivity

A context selector K is a set of procedures that are treated context-sensitively
by the analysis:

K ∈ ℘(F)

We extend the control-flow graph with context selector K. First, we define
a set CK ⊆ C× C∗c of context-enriched nodes. With the definition of CK , the
control flow relation (→) ⊆ C× C is extended to →K :

Definition 1 (→K) (→K) ⊆ CK × CK is the context-enriched control flow
relation:

(c, κ)→K (c′, κ′) iff
c→ c′ ∧ κ′ = κ (c′ 6∈ Ce] Cr)
c→ c′ ∧ κ′ = c · κ (c ∈ Cc ∧ c′ ∈ Ce ∧ fid(c′) ∈ K)
c→ c′ ∧ κ′ = ε (c ∈ Cc ∧ c′ ∈ Ce ∧ fid(c′) 6∈ K)
c→ c′ ∧ κ = callof(c′) ::K κ′ (c ∈ Cx ∧ c′ ∈ Cr)

where ε is the empty call sequence that subsumes all other contexts.

The analysis differentiates multiple abstract states at each program node
c, depending on each context κ. The analysis computes a pre-fixpoint of the
following abstract semantic function F on CK :

F : (CK → S)→ (CK → S)

F (X)(c, κ) = Jcmd(c)K(
⊔

(c0,κ0)→K(c,κ)

X(c0, κ0))

Learning Analysis Strategies for Octagon and Context Sensitivity 21

6 Learning a Strategy for Selecting Contexts

In this section, we present our method for learning a context selector from a
given codebase. As in the case of Section 4, we assume that a set of pairs of
programs and queries:

P = {(P1, Q1), . . . , (PN , QN)},

A query in Qi is a pair of a program point c of Pi and a predicate p on a
variable in Pi. In our setting, the predicate indicates whether the value of
the variable is positive or not, i.e., x ≥ 1. The choice is because our client
analysis targets to buffer-overrun properties that requires the size of buffer
should be a positive number. The general principle is also applicable to other
client analyses by using different predicates.

6.1 Automatic Generation of Labeled Data

Impact Pre-analysis We review the impact pre-analysis for context-sensitivity [16].
The impact pre-analysis estimates the impact of context-sensitivity of the main
analysis. To do so, the pre-analysis is fully context-sensitive but uses a simple
finite abstract domain:

S] = Var → V

where V = {⊥,F,>} is a finite complete lattice. The meaning of V is charac-
terized by the following function:

γv(>) = I
γv(F) = {[a, b] ∈ I | 0 ≤ a}
γv(⊥) = ∅

Domain V abstracts a set of intervals. F denotes all non-negative intervals
and > denotes all intervals.

The abstract semantics for the impact pre-analysis is defined as follows:

JskipK](s]) = s]

Jx := eK](s]) =

{
s][x 7→ JeK](s])] (s] 6= ⊥)
⊥ (s] = ⊥)

where JeK] is defined as follows: for every s 6= ⊥,

JnK](s]) = if (n ≥ 0) then F else >
JxK](s]) = s](x)

Je1 + e2K](s]) = Je1K](s]) t Je2K](s])
Je1 − e2K](s]) = >

The analysis computes the least fixpoint of the semantic function F :

22 Kihong Heo et al.

F] : (CK∞ → S])→ (CK∞ → S])

F](X)(c, κ) = Jcmd(c)K](
⊔

(c0,κ0)→K∞ (c,κ)

X(c0, κ0)).

where K∞ = F represents the full context-sensitivity.

Automatic Labeling We run the pre-analysis on every program in the codebase
and collect all the functions that are predicted to be effective for proving some
queries. To do so, we first select queries according to the pre-analysis results:

Q′i = {(c, x) | (c, x) ∈ Q ∧ Xi(c)(x) = F}

where Xi is a pre-analysis result that maps each program point in Pi to an
abstract state in S]. Next, we build a program slice that includes all the de-
pendencies of each selected query. All the functions that are involved in the
dependencies are marked as positive examples.

The slice of a query is defined on the value-flow graph (Θ, ↪→) [16] of the
given program as follows:

Θ = C×Var , (↪→) ⊆ Θ ×Θ

A node of the value-flow graph is a pair of program node and a variable, and
(↪→) is the edge relation between the nodes.

Definition 2 (↪→) The value-flow relation (↪→) ⊆ (C×Var)×(C×Var) links
the vertices in C×Var according to the specification below:

((c, κ), x) ↪→ ((c′, κ′), x′) iff (c, κ)→ (c′, κ′) ∧ x = x′ (cmd(c′) = skip)
(c, κ)→ (c′, κ′) ∧ x = x′ (cmd(c′) = y := e ∧ y 6= x′)
(c, κ)→ (c′, κ′) ∧ x ∈ var(e) (cmd(c′) = y := e ∧ y = x′)

where var(e) is defined as follows:

var(e) = {x1, · · · , xn} ⇐⇒ ∀s ∈ S]\{⊥}.∃v ∈ V.JeK](s) = s(x1)t· · · s(xn)tv

We extend the ↪→ to its (fully) context-enriched version ↪→K :

Definition 3 (↪→K) The (fully) context-enriched value-flow relation (↪→K∞

) ⊆ (CK∞ × Var) × (CK∞ × Var) links the vertices in CK∞ × Var according
to the specification below:

((c, κ), x) ↪→ ((c′, κ′), x′) iff (c, κ)→K (c′, κ′) ∧ x = x′ (cmd(c′) = skip)
(c, κ)→K (c′, κ′) ∧ x = x′ (cmd(c′) = y := e ∧ y 6= x′)
(c, κ)→K (c′, κ′) ∧ x ∈ var(e) (cmd(c′) = y := e ∧ y = x′)

Learning Analysis Strategies for Octagon and Context Sensitivity 23

CFG

1x = 1

2call f 3y = x

4call g 5z = y+1

6z > 0?

7y = 10

8call g

m f g h

Calling
Contexts

κ0 2·κ0 {4·2·κ0, 8·κ1} κ1

Fig. 5 Example context selector. Gray and black nodes in CFG are source and query points,
respectively. The superscript in front of each command denotes the control point.

On the value-flow graph, we derive a program slice that includes all the
dependencies of the query (cq, xq). A query (cq, xq) depends on a vertex (c, x)
in the value-flow graph if there exists an interprocedurally-valid path between
(c, x) and (cq, xq) on the graph:

∃κ, κq. (ι, ε)→∗K (c, κ) ∧ ((c, κ), x) ↪→∗K ((cq, κq), xq).

Among such dependent nodes, we denote the set of nodes that do not have
predecessors by sources (Φ):

Definition 4 (Φ) Sources Φ are vertices in Θ where dependencies begin:

Φ = {(c0, x0) ∈ Θ | ¬(∃(c, x) ∈ Θ. (c, x) ↪→ (c0, x0))}.

Intuitively the sources implies that the abstract semantics at (c0, x0) ∈ Θ
assigns a fixed constant abstract value to x0 without using or joining other
abstract values from vertices in Θ.

We define the set Φ(cq,xq) of sources on which the query (cq, xq) depends:

Definition 5 (Φ(cq,xq)) Sources on which the query (cq, xq) depends:

Φ(cq,xq) = {(c0, x0) ∈ Φ | ∃κ0, κq.(ι, ε)→∗K (c0, κ0) ∧ (c0, x0) ↪→∗K ((cq, κq), xq)}.

Example 1 Consider the control flow graph in Figure 5. Node 6 denotes the
query point, i.e., (cq, xq) = (6, z). The gray nodes (node 1 and 7) represent
the sources of the query, i.e., Φ(6,z) = {(1, x), (7, y)}.

For a source (c0, x0) ∈ Φ(cq,xq) and an initial context κ0 such that (ι, ε)→∗K∞
(c0, κ0), the following interprocedurally-valid path

((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq) (4)

represents a dependency path for the query (cq, xq).
We denote the set of all dependency paths for the query by Path(cq,xq):

24 Kihong Heo et al.

Definition 6 (Path(cq,xq)) The set of all dependency paths for the query
(cq, xq) is defined as follows:

Path(cq,xq) = {((c0, κ0), x0) ↪→K∞ · · · ↪→K∞ ((cq, κq), xq) | (c0, x0) ∈ Φ(cq,xq)}.

Example 2 In Figure 5, suppose that κ0 and κ1 are the initial contexts of
functions m and h, respectively. For source (1, x), we compute the following
dependency path to the query (6, z):

p1 = ((1, κ0), x) ↪→K∞ ((2, κ0), x) ↪→K∞ ((3, 2 · κ0), y)
↪→K∞((4, 2 · κ0), y) ↪→K∞((5, 4 · 2 · κ0), z) ↪→K∞((6, 4 · 2 · κ0), z)

and, for source (7, y), we compute the following path to (6, z):

p2 = ((7, κ1), y) ↪→K∞ ((8, κ1), y) ↪→K∞ ((5, 8 · κ1), z)
↪→K∞ ((6, 8 · κ1), z).

Then, Path(6,z) = {p1, p2}.

Finally, we compute a set of functions that constitute the context-sensitivity
for the query q:

Definition 7 (Funq) The set of functions that are called in all the dependency
paths for the query q is defined as follows:

Funq = {fid(c′) | c→ c′ ∧ c ∈ Cc ∧ c′ ∈ Ce ∧ ((, c ·),) ∈ p ∧ p ∈ Pathq}

Example 3 In Figure 5, we compute a set of functions that are called in path
p1 and p2 in Example 2:

Fun(6,z) = {f, g}

From the pre-analysis results and the dependencies, we generate labeled
data D as follows:

D =
⋃

1≤i≤N

{(Pi, ψ, L) | L = ⊕ ⇐⇒ ∃q ∈ Q′i. ψ ∈ Funq}

6.2 Features and Classifier

As in Section 4.2, we represent the labeled data as feature vectors and derive a
classifier using an off-the-shelf learning algorithm. For context-sensitivity, we
use the features for functions in Table 2 [17]. Each of them maps a pair (P,ψ)
of program P and function ψ to 0 or 1. The vector representation is the set V
defined as follows:

f(P,ψ) =
(
f1(P,ψ), . . . , fm(P,ψ)

)
∈ {0, 1}m,

V = {(f(P,ψ), L) | (P,ψ, L) ∈ D} ∈ ℘({0, 1}m × {⊕,	}).

An off-the-shelf algorithm computes a binary classifier C from V:

C : {0, 1}m → {⊕,	}.

Learning Analysis Strategies for Octagon and Context Sensitivity 25

i Description of feature fi(P, ψ)
1 leaf function
2 function containing malloc
3 function containing realloc
4 function containing a loop
5 function containing an if statement
6 function containing a switch statement
7 function using a string-related library function
8 write to a global variable
9 read a global variable
10 write to a structure field
11 read from a structure field
12 directly return a constant expression
13 indirectly return a constant expression
14 directly return an allocated memory
15 indirectly return an allocated memory
16 directly return a reallocated memory
17 indirectly return a reallocated memory
18 return expression involves field access
19 return value depends on a structure field
20 return void
21 directly invoked with a constant
22 constant is passed to an argument
23 invoked with an unknown value
24 functions having no arguments
25 functions having one argument
26 functions having more than one argument
27 functions having an integer argument
28 functions having a pointer argument
29 functions having a structure as an argument

Table 2 Features for partially context-sensitive analysis.

6.3 Strategy for Context Selector

Finally, we define a strategy for context-sensitivity. Given a program P and
a set of functions in P , which is denoted by FP , our strategy computes the
following set of functions as the context selector K:

K = {ψ | C ◦ f(ψ) = ⊕ ∧ ψ ∈ FP }

7 Experiments

We describe the experimental evaluation of our method for learning strategies
for variable-clustering and context-sensitivity. The evaluation aimed to answer
the following questions:

1. Effectiveness: How well does the partially relational Octagon and par-
tially context-sensitive Interval analysis with a learned strategy perform,
compared with the existing Interval and Octagon analyses?

2. Generalization: Does the strategy learned from small programs also work
well for large unseen programs?

26 Kihong Heo et al.

3. Feature design: How should we choose a set of features in order to make
our method learn a good strategy?

4. Choice of an off-the-shelf classification algorithm: Our method uses
a classification algorithm for inferring a decision tree by default. How much
does this choice matter for the performance of our method?

We conducted our experiments with a realistic static analyzer and open-
source C benchmarks. We implemented our method on top of Sparrow, a static
buffer-overflow analyzer for real-world C programs [27]. The analyzer performs
the combination of the Interval analysis and the pointer analysis based on
allocation-site abstraction with several precision-improving techniques such as
fully flow-, field-sensitivity and selective context-sensitivity [16]. In our exper-
iments, we modified Sparrow to use the partially relational Octagon analysis
as presented in Section 3 and the partially context-sensitive Interval analysis
as presented in Section 5. The analyses were implemented on top of the sparse
analysis framework [15,14], so it is significantly faster than the vanilla anal-
yses. For the implementation of data structures and abstract operations for
Octagon, we tried the OptOctagons plugin [26] of the Apron framework [7].
For the decision tree learning, we used the Scikit-learn [18] library and its
default hyperparameters.

We used 25 open-source benchmark programs (Table 3). Among the bench-
mark programs, we selected two subsets of the programs that may benefit
from context-sensitivity and Octagon, respectively. To do so, we ran their im-
pact pre-analysis counterparts [16], then chose 22 programs for the partially
context-sensitive analysis and 17 programs for the partially relational Octagon
analysis according to the pre-analysis results. All the experiments were done
on a Ubuntu machine with Intel Xeon clocked at 2.4GHz cpu and 192GB of
main memory.

7.1 Effectiveness

We evaluated the effectiveness of a strategy learned by our method on the cost
and precision of the analyses.

7.1.1 Partially Relational Octagon Analysis

We compared the partial Octagon analysis with a learned variable-clustering
strategy with the Interval analysis and the approach for optimizing Octagon
in [16]. The approach in [16] also performs the partial Octagon analysis in
Section 3 but with a fixed variable-clustering strategy that uses the impact
pre-analysis online (rather than offline as in our case): the strategy runs the
impact pre-analysis on a given program and computes variable clusters of the
program based on the results of the pre-analysis. Note that this partial Octagon
analysis only based on the pre-analysis is already significantly faster than the
original Octagon analysis and the partial Octagon analysis based on a syntactic
heuristic [1]. All the three analysis are partially context-sensitive enabled by

Learning Analysis Strategies for Octagon and Context Sensitivity 27

Program LOC #Var #Fun
brutefir-1.0f 103 54 2
consolcalculator-1.0 298 165 5
id3-0.15 512 527 2
spell-1.0 2,284 427 30
mp3rename-0.6 2,466 332 7
irmp3-0.5.3.1 3,797 523 82
barcode-0.96 4,460 1,738 57
httptunnel-3.3 6,174 1,622 80
e2ps-4.34 6,222 1,437 15
sbm-0.0.4 6,502 868 64
mpegdemux-0.1.3 7,783 732 71
bzip2-spec2000 9,796 945 75
bc-1.06 13,093 1,891 133
less-382 23,822 3,682 382
tar-1.13 30,154 4,944 222
agedu-8642 32,637 4,149 86
gbsplay-0.0.91 34,002 1,608 188
bison-2.5 56,361 14,610 964
pies-1.2 66,196 9,472 701
icecast-server-1.3.12 68,564 6,183 562
aalib-1.4p5 73,412 2,786 129
raptor-1.4.21 76,378 8,889 976
dico-2.0 84,333 4,349 622
rnv-1.7.10 93,858 4,146 390
lsh-2.0.4 110,898 18,880 1,702

Table 3 The characteristics of the benchmark programs. LOC reports lines of code before
preprocessing. #Var reports the number of program variables (more precisely, abstract
locations). #Fun reports the number of functions in each program.

the pre-analysis for context-sensitivity [16]. To show the net effects of variable
clustering, we omitted the cost of the pointer analysis and compared only the
cost for the numerical analyses. Table 4 shows the results of our comparison
with 17 open-source programs. We used the leave-one-out cross validation to
evaluate our method; for each program P in the table, we applied our method
to the other 16 programs, learned a variable-clustering strategy, and ran the
partial Octagon on P with this strategy.

The results show that the partial Octagon with a learned strategy strikes
the right balance between precision and cost. In total, the Interval analysis re-
ports 7,406 alarms from the benchmark set.3 The existing approach for partial
Octagon [16] reduced the number of alarms by 252, but increased the analy-
sis time by 62x. Meanwhile, our learning-based approach for partial Octagon
reduced the number of alarms by 240 while increasing the analysis time by 2x.

We point out that in some programs, the precision of our approach was
incomparable with that of the approach in [16]. For instance, our approach
would produce less precise results if the usage patterns of variables did not
appear in training programs. The following code is excerpted from less-382:

3 In practice, eliminating these false alarms is extremely challenging in a sound yet non-
domain-specific static analyzer for full C. The false alarms arise from a variety of reasons,
e.g., recursive calls, unknown library calls, complex loops, etc.

28 Kihong Heo et al.

#Alarms Time(s)
Program Itv Impt ML Itv Impt ML
brutefir-1.0f 4 0 0 0 0 (0) 0 (0)
consolcalculator-1.0 20 10 10 0 0 (0) 0 (0)
id3-0.15 15 6 6 0 0 (0) 1 (0)
spell-1.0 20 8 17 0 1 (1) 1 (0)
mp3rename-0.6 33 3 3 0 1 (0) 1 (0)
irmp3-0.5.3.1 2 0 0 1 2 (0) 3 (1)
barcode-0.96 235 215 215 2 9 (7) 6 (1)
httptunnel-3.3 52 29 27 3 35 (32) 5 (1)
e2ps-4.34 119 58 58 3 6 (3) 3 (0)
bc-1.06 371 364 364 14 252 (238) 16 (1)
less-382 625 620 625 83 2,354 (2,271) 87 (4)
bison-2.5 1,988 1,955 1,955 137 4,827 (4,685) 237 (79)
pies-1.2 795 785 785 49 14,942 (14,891) 95 (43)
icecast-server-1.3.12 239 232 232 51 109 (55) 107 (42)
raptor-1.4.21 2,156 2,148 2,148 242 17,844 (17,604) 345 (104)
dico-2.0 402 396 396 38 156 (117) 51 (24)
lsh-2.0.4 330 325 325 33 139 (106) 251 (218)
Total 7,406 7,154 7,166 656 40,677 (40,011) 1,207 (519)

Table 4 Comparison of performance of the Interval analysis and two partial Octagon anal-
yses, one with a fixed strategy based on the impact pre-analysis and the other with a learned
strategy. #Alarms reports the number of buffer-overflow alarms reported by the interval
analysis (Itv), the partial Octagon analysis with a fixed strategy (Impt) and that with a
learned strategy (ML). Time shows the analysis time in seconds, where, in X(Y), X means
the total time (including that for clustering and the time for main analysis) and Y shows
the time spent by the strategy for clustering variables.

1 int old_lesskey(char* buf, int len){

2 *(buf + (len - 1)) = 0; // Query

3 }

4

5 int lesskey(){

6 buf = malloc(len);

7 old_lesskey(buf, len);

8 }

The pre-analysis precisely estimated that the query at line 2 can be proven by
the Octagon analysis. However, our learning approach could not infer this fact
because in training programs, it was less common 1) to pass a buffer and its
size to a callee and then 2) to access an element inside of the callee. On the
other hand, for httptunnel-3.3, our approach produces better results because
the impact pre-analysis of [16] uses F conservatively and fails to identify
some important relationships between variables as in Section 4. Consider the
following code:

1 data = malloc(n + 2);

2 n = n + 1;

3 data[n] = 0; // Query

The pre-analysis over-approximates the upper-bound of the difference between
n and the size of data to > because of the assignment at line 2. As a result,

Learning Analysis Strategies for Octagon and Context Sensitivity 29

the approach in [16] fails to find out that the Octagon analysis is able to
prove the safety of the memory access at line 3. However, our approach can
prove the query because it works by identifying relationships between vari-
ables to be tracked by Octagon, instead of finding out which queries would
be proved by Octagon. When our approach summarizes this example using
features, it notices that an assignment of the form x = y + k, a malloc of
the form x = malloc(y + k), and an expression of the form x[y + k] are used
in the example. Then, using the learned classifier, it infers that the relation-
ship between data and n should be tracked because these two variables are
involved in those assignment, malloc and array access. This inference makes
the following Octagon analysis prove the query.

7.1.2 Partially Context-sensitive Interval Analysis

We evaluated the performance of the partially context-sensitive Interval anal-
ysis with our learned strategy compared to the context-insensitive one and the
partially context-sensitive one by the impact pre-analysis. Like the Octagon
experiments in the previous section, we used the leave-one-out cross validation
on 22 programs to evaluate the learning method.

We came to the same conclusion; our learning-based strategy shows similar
precision but noticeably saved the analysis time. Table 5 shows the partially
context-sensitive analysis with a learned strategy is cost-effective. In total, the
context-insensitive Interval analysis reported 13,663 alarms form the bench-
mark set. The partially context-sensitive one by the pre-analysis [16] reduced
3,387 alarms (24.8%) but increased the analysis time by 40%. Meanwhile, our
learning-based approach reduced the number of alarms by 3,382 (24.8%) while
increasing the time consumption by only 14.1%.

7.2 Generalization

Although the impact pre-analyses scales far better than the fully sensitive ones,
sometime they are still too expensive to be used for training routinely for large
programs (> 100 KLOC), (e.g., Octagon). Therefore, in order for our approach
to scale, the strategies learned from a codebase of small programs need to be
effective for large unseen programs. Whether this need is met or not depends
on whether our learning method generalize information from small programs
to large programs well.

To evaluate this generalization capability of our learning method, we di-
vided the benchmark set into small (< 60 KLOC) and large (> 60 KLOC)
programs, learned each strategy from the group of small programs, and eval-
uated its performance on that of large programs.

Table 6 shows the results of the partial Octagon analysis. Columns la-
beled Small report the performance of our approach learned from the small
programs. All reports the performance of the strategy used in Section 7.1
(i.e., the strategy learned with all benchmark programs except for each target

30 Kihong Heo et al.

#Alarms Time(s)
Program CI Impt ML Itv Impt ML
spell-1.0 58 20 20 1 11 (0) 2 (0)
mp3rename-0.6 35 33 33 1 2 (1) 1 (0)
irmp3-0.5.3.1 2 2 2 1 4 (2) 3 (1)
barcode-0.96 235 235 235 2 6 (2) 4 (1)
httptunnel-3.3 51 51 51 7 9 (2) 7 (1)
e2ps-4.34 119 119 119 3 8 (2) 3 (0)
sbm-0.0.4 174 174 174 1 12 (2) 2 (0)
mpegdemux-0.1.3 61 61 61 2 13 (1) 2 (0)
bzip2-spec2000 270 266 268 4 4 (1) 4 (1)
bc-1.06 614 371 371 18 32 (8) 49 (2)
less-382 625 625 625 390 372 (13) 359 (10)
tar-1.13 932 683 683 128 130 (14) 103 (3)
agedu-8642 688 467 467 16 129 (115) 17 (3)
gbsplay-0.0.91 74 74 72 5 5 (1) 5 (1)
bison-2.5 3,497 1,988 1,989 335 448 (80) 398 (30)
pies-1.2 1,508 795 794 128 175 (24) 142 (10)
icecast-server-1.3.12 288 239 239 98 194 (48) 136 (8)
aalib-1.4p5 126 126 126 8 18 (9) 24 (16)
raptor-1.4.21 2,322 2,156 2,160 606 753 (92) 751 (54)
dico-2.0 584 402 403 37 43 (2) 54 (11)
rnv-1.7.10 1,067 1,059 1,062 35 66 (18) 53 (6)
lsh-2.0.4 333 330 327 125 299 (174) 151 (20)
Total 13,663 10,276 10,281 1,951 2,733 (611) 2,270 (178)

Table 5 Comarison of performance of the context-insensitive Interval analysis and two par-
tially context-sensitive ones, one with a fixed strategy based on the impact pre-analysis and
the other with a learned strategy. #Alarms reports the number of buffer-overflow alarms
reported by the context-insensitive interval analysis (CI), the partial context-sensitive anal-
ysis with a fixed strategy (Impt) and that with a learned strategy (ML). Time shows the
analysis time in seconds, where, in X(Y), X means the total time (including that for the
selection and the time for main analysis) and Y shows the time spent by the selection.

#Alarms Time(s)
Program Itv All Small Itv All Small
pies-1.2 795 785 785 49 95 (43) 98 (43)
icecast-server-1.3.12 239 232 232 51 113 (42) 99 (42)
raptor-1.4.21 2,156 2,148 2,148 242 345 (104) 388 (104)
dico-2.0 402 396 396 38 61 (24) 62 (24)
lsh-2.0.4 330 325 325 33 251 (218) 251 (218)
Total 3,922 3,886 3,886 413 864 (432) 899 (432)

Table 6 Generalization performance of our learning method for the partial Octagon analy-
sis. Small reports the performance of our technique using only small programs (< 60KLOC)
as training data. Other results by the interval analysis (Itv) and the leave-one-out cross val-
idation (All) are the same as Table 4.

program). In our experiments, Small had the same precision as All with neg-
ligibly increase in analysis time (4%). These results show that the information
learned from small programs is general enough to infer the useful properties
about large programs.

Table 7 shows the results of the partially context-sensitive Interval analysis.
In the experiments, Small did not seriously sacrifice the performance: it had

Learning Analysis Strategies for Octagon and Context Sensitivity 31

#Alarms Time(s)
Program CI All Small CI All Small
pies-1.2 1,508 795 791 128 142 (10) 157 (10)
icecast-server-1.3.12 288 239 239 98 136 (8) 122 (8)
aalib-1.4p5 126 126 125 8 24 (16) 40 (16)
raptor-1.4.21 2,322 2,156 2,160 606 751 (54) 891 (54)
dico-2.0 584 402 402 37 54 (11) 52 (11)
rnv-1.7.10 1,067 1,059 1,062 35 53 (6) 73 (6)
lsh-2.0.4 333 330 333 125 151 (20) 159 (20)
Total 6,228 5,107 5112 1,037 1,311 (125) 1494 (125)

Table 7 Generalization performance of our learning method for the partially context-
sensitive Interval analysis. Small reports the performance of our technique using only small
programs (< 60KLOC) as training data. Other results by the context-sensitive interval
analysis (CI) and the leave-one-out cross validation (All) are the same as Table 5.

almost the same precision as All while increasing in analysis time by 13%. In
this case, the performance degradation is larger than the partial Octagon case.
We conjecture that this is because of the quantity and quality of the training
data. The number of training data of partial context-sensitivity (functions) is
much less than the ones for partial Octagon (variable pairs). In addition, the
pre-analysis for context-sensitivity is less precise than the one for Octagon [16].

7.3 Feature Design

We identified top ten features that are most important to learn an effective
variable-clustering strategy and an context-sensitivity. We applied our method
to all the programs so as to learn a decision tree, and measured the relative
importance of features by computing their Gini index [2] with the tree. Intu-
itively, the Gini index shows how much each feature helps a learned decision
tree to classify variable pairs as ⊕ or 	. Thus, features with high Gini index
are located in the upper part of the tree.

According to the results, the ten most important features are 30, 15, 18,
16, 29, 6, 24, 23, 1, and 21 in Table 1. We found that many of the top ten
features are negative and describe situations where the precise tracking of
variable relationships by Octagon is unnecessary. For instance, feature 30 (size
of constant string) and 29 (finite interval) represent variable pairs whose re-
lationships can be precisely captured even with the Interval analysis. Using
Octagon for such pairs is overkill. Initially, we conjectured that positive fea-
tures, which describe situations where the Octagon analysis is effective, would
be the most important for learning a good strategy. However, data show that
effectively ruling out unnecessary variable relationships is the key to learning
a good variable-clustering strategy for Octagon.

In context-sensitivity, the top features are 2, 3, 8, 14, 15, 16, 17 21, 5, and
9 in Table 2. Most of the top features describe common scenarios that context-
sensitivity helps. For example, the following code in Figure 6 has a wrapper
of xmalloc and an identity function dec that require context-sensitivity for

32 Kihong Heo et al.

1 char* xmalloc(int size){

2 p = malloc(size);

3 if(p == 0) fail();

4 else return p;

5 }

6

7 char* dec(int x){ return x-1; }

8

9 void main(){

10 p = xmalloc(4);

11 q = xmalloc(unknown);

12 i = id(4);

13 j = id(unknown);

14 *(p+i) = 0;

15 *(q+j) = 0;

16 }

Fig. 6 A common pattern that context-sensitivity helps.

precise analysis. To prove the safety of the buffer access at line 14, the analysis
runs with context-sensitivity on xmalloc and dec that have feature 2 (contain
malloc), 14 (return an allocated memory), 21 (invoke with a constant), and 5
(contain an if statement).

7.4 Choice of an off-the-shelf classification algorithm

Our learning method uses an off-the-shelf algorithm for inferring a decision
tree. In order to see the importance of this default choice, we replaced the
decision-tree algorithm by logistic regression [11], which is another popular
supervised learning algorithm and infers a linear classifier from labeled data.
Such linear classifiers are usually far simpler than nonlinear ones such as a
decision tree. We then repeated the leave-one-out cross validation described
in Section 7.1.

In this experiment, the new partial Octagon analysis with linear classifiers
proved the same number of queries as before, but it was significantly slower
than the analysis with decision trees. Changing regularization in logistic re-
gression from nothing to L1 or L2 and varying regularization strengths (10−3,
10−4 and 10−5) did not remove this slowdown. We observed that in all of
these cases, inferred linear classifiers labeled too many variable pairs with ⊕
and led to unnecessarily big clusters of variables. Such big clusters increased
the analysis time of the partial Octagon with decision trees by 10x–12x. Such
an observation indicates that a linear classifier is not expressive enough to
identify important variable pairs for the Octagon analysis.

Learning Analysis Strategies for Octagon and Context Sensitivity 33

8 Related Work

8.1 Octagon analysis

The scalability issue of the Octagon analysis is well-known, and there have
been various attempts to optimize the analysis [15,26]. Oh et al. [15] exploited
the data dependencies of a program and removed unnecessary propagation of
information between program points during Octagon’s fixpoint computation.
Singh et al. [26] designed better algorithms for Octagon’s core operators and
implemented a new library for Octagon called OptOctagons, which has been
incorporated in the Apron framework [7]. These approaches are orthogonal to
our approach, and all of these three can be used together as in our implemen-
tation. We point out that although the techniques from these approaches [15,
26] improve the performance of Octagon significantly, without additionally
making Octagon partial with good variable clusters, they were not enough to
make Octagon scale large programs in our experiments. This is understand-
able because the techniques keep the precision of the original Octagon while
making Octagon partial does not.

Existing variable-clustering strategies for the Octagon analysis use a simple
syntactic criterion for clustering variables [1] (such as selecting variable pairs
that appear in particular kinds of commands and forming one cluster for each
syntactic block), or a pre-analysis that attempts to identify important vari-
able pairs for Octagon [16]. When applied to large general-purpose programs
(not designed for embedded systems), the syntactic criterion led to ineffective
variable clusters, which made the subsequent partial Octagon analysis slow
and fail to achieve the desired precision [16]. The approach based on the pre-
analysis [16], on the other hand, has an issue with the cost of the pre-analysis
itself; it is cheaper than that of Octagon, but it is still expensive as we showed
in the paper. In a sense, our approach automatically learns fast approximation
of the pre-analysis from the results of running the pre-analysis on programs
in a given codebase. In our experiments, this approximation (which we called
strategy) was 33x faster than the pre-analysis while decreasing the number of
proved queries by 2% only.

8.2 Data-driven approach to program analysis

Recently there have been a large amount of research activities for develop-
ing data-driven approaches to challenging program analysis problems, such as
specification inference [21,19], invariant generation [12,20,23–25,4], accelera-
tion of abstraction refinement [5], and smart report of analysis results [8,13,
29]. In particular, Oh et al. [17] considered the problem of automatically learn-
ing analysis parameters from a codebase, which determine the heuristics used
by the analysis. They formulated this parameter learning as a blackbox opti-
mization problem, and proposed to use Bayesian optimization for solving the
problem. Initially we followed this blackbox approach [17], and tried Bayesian

34 Kihong Heo et al.

optimization to learn a good variable-clustering strategy with our features. In
the experiment, we learned the strategy from the small programs as in Section
7.2 and chose the top 200 variable pairs which are enough to make a good clus-
tering as precise as our strategy; the learning process was too costly with larger
training programs and more variable pairs. This initial attempt was a total
failure. The learning process tried only 384 parameters and reduced 14 false
alarms even during the learning phase for a whole week, while our strategy
reduced 240 false alarms. Unlike the optimization problems for the analyses
in [17], our problem was too difficult for Bayesian optimization to solve. We
conjecture that this was due to the lack of smoothness in the objective func-
tion of our problem. This failure led to the approach in this paper, where
we replaced the blackbox optimization by a much easier supervised-learning
problem.

9 Conclusion

In this paper we proposed a method for learning a variable-clustering strategy
for the Octagon analysis from a codebase. One notable aspect of our method is
that it generates labeled data automatically from a given codebase by running
the impact pre-analysis for Octagon [16]. The labeled data are then fed to an
off-the-shelf classification algorithm (in particular, decision-tree inference in
our implementation), which infers a classifier that can identify important vari-
able pairs from a new unseen program, whose relationships should be tracked
by the Octagon analysis. This classifier forms the core of the strategy that
is returned by our learning method. Our experiments show that the partial
Octagon analysis with the learned strategy scales up to 100KLOC and is 33x
faster than the one with the impact pre-analysis (which itself is significantly
faster than the original Octagon analysis), while increasing false alarms by only
2%. The general principle of this method is applicable to other types of sensi-
tivities in static analysis. We experimentally demonstrate that the method is
also effective for a context-sensitive interval analysis.

We also show that the general idea of this approach is applicable to learn
a strategy for other types of sensitivities in static analysis. We designed a
partially context-sensitive interval analysis using our learning method with
the same idea. The experimental results show that our method is also effective
to learn a strategy for context-sensitivity.

Acknowledgements This work was supported by Samsung Research Funding & Incu-
bation Center of Samsung Electronics under Project Numbers SRFC-IT1701-09. This work
was supported by Institute for Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIT) (No.2015-0-00565,Development of Vulnerabil-
ity Discovery Technologies for IoT Software Security, No.2017-0-00184, Self-Learning Cyber
Immune Technology Development).

Learning Analysis Strategies for Octagon and Context Sensitivity 35

References

1. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: A Static Analyzer for Large Safety-Critical Software. In: PLDI (2003)

2. Breiman, L.: Random Forests. Machine Learning (2001)
3. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints among Variables

of a Program. In: POPL (1978)
4. Garg, P., Neider, D., Madhusudan, P., Roth, D.: Learning invariants using decision trees

and implication counterexamples. In: POPL, pp. 499–512 (2016)
5. Grigore, R., Yang, H.: Abstraction refinement guided by a learnt probabilistic model.

In: POPL (2016)
6. Heo, K., Oh, H., Yang, H.: Learning a variable-clustering strategy for octagon from

labeled data generated by a static analysis. In: SAS (2016)
7. Jeannet, B., Miné, A.: Apron: A Library of Numerical Abstract Domains for Static

Analysis. In: CAV (2009)
8. Mangal, R., Zhang, X., Nori, A.V., Naik, M.: A user-guided approach to program anal-

ysis. In: ESEC/FSE, pp. 462–473 (2015)
9. Miné, A.: The octagon abstract domain. Higher-order and symbolic computation (2006)

10. Mitchell, T.M.: Machine learning. McGraw-Hill, Inc. (1997)
11. Murphy, K.P.: Machine learning: a probabilistic perspective (adaptive computation and

machine learning series). Mit Press ISBN (2012)
12. Nori, A.V., Sharma, R.: Termination proofs from tests. In: FSE, pp. 246–256 (2013)
13. Octeau, D., Jha, S., Dering, M., McDaniel, P., Bartel, A., Li, L., Klein, J., Le Traon,

Y.: Combining static analysis with probabilistic models to enable market-scale android
inter-component analysis. In: POPL, pp. 469–484 (2016)

14. Oh, H., Heo, K., Lee, W., Lee, W., Park, D., Kang, J., Yi, K.: Global sparse analysis
framework. ACM Trans. Program. Lang. Syst. 36(3), 8:1–8:44 (2014). DOI 10.1145/
2590811. URL http://doi.acm.org/10.1145/2590811

15. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse global
analyses for C-like languages. In: PLDI (2012)

16. Oh, H., Lee, W., Heo, K., Yang, H., Yi, K.: Selective context-sensitivity guided by
impact pre-analysis. In: PLDI (2014)

17. Oh, H., Yang, H., Yi, K.: Learning a strategy for adapting a program analysis via
bayesian optimisation. In: OOPSLA (2015)

18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: Machine Learning in Python.
The Journal of Machine Learning Research (2011)

19. Raychev, V., Bielik, P., Vechev, M.T., Krause, A.: Learning programs from noisy data.
In: POPL, pp. 761–774 (2016)

20. Sankaranarayanan, S., Chaudhuri, S., Ivančić, F., Gupta, A.: Dynamic inference of likely
data preconditions over predicates by tree learning. In: ISSTA, pp. 295–306 (2008)

21. Sankaranarayanan, S., Ivančić, F., Gupta, A.: Mining library specifications using induc-
tive logic programming. In: ICSE, pp. 131–140 (2008)

22. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In: Pro-
gram Flow Analysis: Theory and Applications, pp. 189–234. Prentice-Hall, Englewood
Cliffs, NJ (1981)

23. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data driven
approach for algebraic loop invariants. In: ESOP, pp. 574–592 (2013). URL http:

//dx.doi.org/10.1007/978-3-642-37036-6_31

24. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learning
geometric concepts. In: SAS, pp. 388–411 (2013)

25. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: CAV, pp. 71–87 (2012)
26. Singh, G., Püschel, M., Vechev, M.: Making Numerical Program Analysis Fast. In:

PLDI (2015)
27. Sparrow: http://ropas.snu.ac.kr/sparrow
28. Venet, A., Brat, G.: Precise and efficient static array bound checking for large embedded

C programs. In: PLDI (2004)

36 Kihong Heo et al.

29. Yi, K., Choi, H., Kim, J., Kim, Y.: An empirical study on classification methods for
alarms from a bug-finding static C analyzer. Information Processing Letters 102(2-3),
118–123 (2007)

