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when the underlying analyses have comparably low precision. For example, if a pointer
analysis precision is not affected by numeric statements like x:=1 then existing sparse
evaluation techniques can remove the statement, but otherwise, the statement cannot be
removed. Our technique, which is a fine-grained sparse evaluation technique, is effectively
Keywords: applicable even to elaborate analyses. A key insight of our technique is that, even though a
Static analysis . statement is relevant to an analysis, it is typical that analyzing the statement involves only
/S\gasgzcé ‘;:ltlf;ggztamn a tin){ subset of its'input abstract memory ‘:md the m(')st' are irrelevant. By exploiti‘ng this
Data-flow analysis sparsity, our technique transforms the original analysis into a form that does not involve
the fine-grained irrelevant semantic behaviors. We formalize our technique within the
abstract interpretation framework. In experiments with a C static analyzer, our technique
improved the analysis speed by on average 14 x .
© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In static analysis, the technique of sparse evaluation has been widely used to optimize the analysis performance
[4,27,11,26,17,14]. Sparse evaluation is based on the observation that static analysis sometimes aggressively abstracts
program semantics and therefore a number of program statements are irrelevant to the analysis. For instance, typical
pointer analyses (e.g., [ 14,15]) have comparably low precision and not affected by numeric statements such as x:=1. The goal
of existing sparse evaluation is to remove such irrelevant statements, which makes the analysis problem smaller
and improves the analysis' scalability. In the literature, sparse evaluations have been effectively used to improve the
performance of pointer analysis [14,30] and classical data-flow analyses [4,27].

However, existing sparse evaluation techniques are not effective for elaborate semantic analyses in general. Note that the
basic assumption of existing sparse evaluation is that the given analysis problem is simple-minded and hence a number of
program statements are irrelevant to the analysis. However, in general semantic analyses, it is not uncommon that the
analysis is so detailed that the assumption of sparse evaluation does not hold. That is, such an analysis considers all types of
values (e.g., including both numbers and pointers) and almost all statements in the program are relevant to the underlying
analysis. For instance, consider an elaborate pointer analysis that considers not only pointers but also numeric values.
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Then statements like x:=1, which would be irrelevant to simple pointer analyses, are no longer irrelevant and cannot be
removed by existing sparse evaluation techniques.

In this paper, we present a new sparse evaluation technique for such detailed static analyses. The intuition behind our
technique is that, even though an analysis is detailed and a statement is relevant, the analysis is still sparse in a fine-grained
way: analyzing the statement uses only small part of its abstract memory. For example, consider analyzing the statement
x:=1. The abstract semantics for the statement would update only the value of x but other values, say v, are not involved in
the analysis of the statement. To exploit this sparsity, we first reformulate the analysis problem into an equivalent form that
is more fine-grained in that semantic equations are expressed explicitly in terms of individual abstract locations. We call
this step decomposition. Then, we define two elimination procedures (which we call no-change and no-contribution
eliminations, respectively) that remove the fine-grained irrelevant behaviors of the analysis. We present our technique in
the abstract interpretation framework [8,6] and prove that the decomposition and elimination procedures are semantics-
preserving, which means that our technique maintains the original analysis' soundness and precision.

Our work provides a general and flexible alternative to the recent sparse analysis framework [23]. Although the goal of
ours and the sparse analysis in [23] is the same (i.e., making the analysis sparse), the techniques used are different: the
technique in [23] constructs def-use dependencies while we eliminate unnecessary dependencies. This difference makes our
technique flexible in controlling the sparseness of the final analysis. We discuss this point in Section 8 in more detail.
Furthermore, we generalize the idea of sparse technique in the abstract interpretation framework with arbitrary trace
partitioning.

We show the effectiveness of our technique in a realistic setting. We implemented our technique on top of Sparrow, an
interval domain-based abstract interpreter [18,16,21,22,24|. In experiments, our technique improved the analysis speed
from 2 to 59 times, on average 14 times, and reduced peak memory consumption by 29-80%, on average 56%, for a variety of
open-source C benchmarks (6K-111K LOC).

Overview: We illustrate our technique with an example. Suppose that we analyze the program in Fig. 1(a) with a non-
relational analysis: the abstract state of the analysis is a map from the set of abstract locations (simply variables x and y in
this example) to abstract values, say numeric intervals [8]. During the analysis, the first statement defines the value of x, the
second statement defines y, and the last statement updates y with the value of x. Observe that existing sparse evaluation
techniques remove no statements in this example, because all the three statements have some effects on the analysis. On
the other hand, our technique works as follows:

1. We reformulate the analysis (Fig. 1(a)) into the decomposed form (Fig. 1(b)) in which values of each abstract location are
computed separately: each instruction ¢ in Fig. 1(a) is split into (¢, x) and (c, y) that hold the values of x and y,
respectively. For instance, at node (1, x), the value of x at instruction 1 is stored and value for y at instruction 1 is stored at
(1,y). Edge (c,x)— (c’,x') means that the value of X" at ¢ may depend on the value of x at c.

2. In Fig. 1(b), we eliminate nodes that have no effect on the analysis, which we call no-change elimination. Note that,
among the six nodes in Fig. 1(b), values are actually updated at nodes (1, x), (2,y), and (3,y). At other nodes (dotted ones
in Fig. 1(b)), values are not changed. The goal of this step is to remove such “no-change” nodes from the analysis. We
simply remove the nodes and short-circuit their in/outflows, which results in Fig. 1(c). Observe that, after no-change
elimination, the value of x from (1, x) is directly propagated to (3,y).

3. In Fig. 1(c), we remove irrelevant input flows, which we call no-contribution elimination. In Fig. 1(c), only the value of x is
necessary to update the value of y at (3,y); the value of y is not used at (3,y). So, we remove the “no-contribution” flow
(2,y)—(3,y). Other unnecessary flows are also removed, leading to Fig. 1(d).

With our technique, the original analysis problem (Fig. 1(a)) is reduced to a smaller problem (Fig. 1(d)). Obviously,
fixpoint computation for the smaller problem will be cheaper than the original analysis.

(1,%) H1,y) (L) (1,x)

2,y) 2,y) |:|<2,y>

(3,v) (3,v) |:|(3,y>
y l A l

Fig. 1. Example: (a) original analysis, (b) after decomposition, (c) after no-change elimination, and (d) after no-contribution elimination.
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Outline: Section 2 describes the family of static analyses that this paper considers. Section 3 defines the decomposition
step. Section 4 defines two semantic independence involved in the static analysis defined in Section 2. Section 5 formally
presents no-contribution and no-elimination procedures. Section 6 shows how to apply our technique to an example
analysis. Section 7 presents the experimental results. Section 8 discusses related work. Section 9 concludes the paper.

Notation: In this paper, all functions are considered partial functions. We consider functions that are of type f e A—B,
where A is a set and B is a complete partial order (cpo). We write dom(f) = A for the domain of f. we write f|c for the
restriction of function f to the domain dom(f) N C. We write f\. for the restriction of f to the domain dom(f) — C. We abuse
the notation f|, and fi, for the domain restrictions on singleton set {a} and dom(f) — {a}, respectively. We write f[a—~ b] for the
function constructed from function f by changing the value for a to b. We write f[ay~bq, ..., ay—~by] for fla;—b1]---[an—by].
We write f[{ay, ..., an}r>b] for fla;—f(ay)ub, ..., an—f(a,)ub] (weak update). We write [a—b] e A— B for a function [a—b](x) = b
if a=x, otherwise undefined, i.e., [a~b](x) = L. For all domains (cpos), we assume an implicit join operator L, ordering
relation C, and appropriate T and L elements. In particular, we define L, =, T, L for functions in a pointwise fashion, e.g.,
fug =x.f(x)ug(x). We write e.A, e.B to denote the first and the second element of e e A x B, respectively.

2. Abstract interpretation-based static analysis

In this section, we define a class of static analysis that we consider in this paper. We consider transition systems as
a program model so that the analysis is general for arbitrary programming language. Thus, our technique is generally
applicable to any language.

In Sections 2.1 and 2.2, we define the program and its collecting semantics, respectively. In Section 2.3, we abstract
the collecting semantics and derive the abstract semantics that we consider. We suppose basic knowledge of the abstract
interpretation framework [8,6] and the trace partitioning [19].

2.1. Programs

We describe a program P as a transition system (S, —, S,), where S is the set of states of the program, (—)< S x S is the
transition relation describing how the program execution progresses from one state to the next state, and S, = S denotes the
set of initial states.

We write S* for the set of all finite non-empty sequences of states. When ¢ is a finite sequence of states, o; denotes the
(i+1) th state of the sequence, gq the first state, and o the last state. Given a sequence ¢ and a state s, ¢ -s denotes a
sequence obtained by appending s to ¢. A sequence ¢ is said to be a trace of the program P if ¢ is a partial execution sequence
of P, i.e., 6p €S, A Vi.oci—a; 1. We abuse the notion of transition relation — for traces, i.e., ¢ > < 3s.0=0"-SAd', —>S.

2.2. Collecting semantics

The collecting semantics | P] € P(S*) of the program P is the set of all traces of P:
[P]={ceS*|looeS, A Vigi—ai 1}

Note that the semantics [P] is the least fixpoint of the semantic function F e P(S*)—P(S*), i.e., [ P| =IfpF, defined as
follows:

FE)2IU{o-SlceXZ Aoy —S)

where I = {s|s € S,} is the set of singleton traces of initial states.
2.3. Abstract semantics

We consider the abstract semantics that are obtained from the collecting semantics of the program P by the following
Galois connections:

P(S*) %(A SP(SY)) Z«:,Z(Aﬁg)

The abstract domain (4 —S) is obtained by applying the following two abstractions in order.

1. Partitioning abstraction (ay,7,): we abstract the set of traces (P(S*)) into partitioned sets of traces (4 —P(S*), where 4 is
the set of partitioning indices, e.g., A is the set of control points in the program). Suppose we are given a well-chosen
partitioning function § e A—P(S*) such that § is a partition, i.e.,, S* =Jxca6(X) and Vx,yeAx#Yy = 8(x) N 8(Y) = @.
Then, a; and y; are defined as follows: (It is well-known that such «; and y; form a Galois-connection [19].)

a1(X)£iced.2 N &)
ri(p) £ UAd)(C)
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By choosing a suitable §, we can define various partitioning strategies [19]. For example, in imperative languages, a state
is often decomposed into a control point in C and a memory state in M, i.e, S=C x M. We use C as the set of
partitioning indices and let §c € C —»P(S*) partition S* based on the final control point: 6-(¢c) £ {¢ € S*|3m.c 5 = (c,m)}.
Then, 5¢c defines the usual flow-sensitive analysis. Likewise, we can define any other trace partitioning such as flow-
insensitivity, context-(in)sensitivity, and path-(in)sensitivity by choosing an appropriate 6.

2. State abstraction (a3, y5): for each partition, we suppose that the associated set of traces is abstracted into an abstract state
($) that over-approximates the reachable states of the traces. a, and 7, are defined as follows:

ax($) £ ¢ & s ((0))
72(d) £ Ace Ays(4(0))

where as and yg are abstraction and concretization functions for set of traces such that P(S*) 3_—) S. We assume that as
abstracts the traces in a way that S is a function cpo (complete partial order) [ »V where { {5 a finite set of abstract
locations, and V is an arbitrary cpo for representing abstract values. All non-relational analyses are expressible in this
domain. For example, in numerical analysis that uses interval domain, the abstract memory state is a map from all
abstract locations to interval values. In addition, the packed relational domain [7,20,31,2] also fits to this domain. Let
Packs = P(Var) be a set of variable groups (i.e., packs) such that | JPacks = Var, and R be a relational abstract domain such
as the octagon domain [20]. Then, the packed relational domain has the form of Packs— R, which associates each pack
with constraints among the variables in the pack. In our framework, we impose that [ is fixed prior to the analysis, which
means that our technique is not applicable to analyses with, for example, dynamic variable packing.

We consider abstract semantics that is characterized by the least fixpoint of abstract semantic function
Fe(A—S)—(A—S) defined as

ﬁ(X):AceAfc<!_|)2(c’)>. 1

where fc e $—$§ is the semantic function at partitioning index ¢ and < is the transition relation between partitioning
indices such that

()2{(c,c)ed x Al € 8(C).c' -0 A o ed(C)}

Transition relation <includes all the possible transitions between partitioning indices: <includes a flow (¢, ¢) if there
exists a trace ¢’ in partition ¢’ and the next of ¢’ belongs to partition c. Note that transition — is generally unknown
prior to the analysis and this is why < is a superset of the possible transition flows. For example, suppose we analyze
an imperative language and we use §¢ as the partitioning function. Then, < is identical to the control flow relation of
the program, which is often given before the program execution. When analyzing a functional program, for another
example, the transition flows can be approximated before the analysis; < can be given by a separate pre-analysis.

The abstract semantic function F should be designed to satisfy aoFCFoq (@ =az°ay), then the soundness of the abstract
semantics is guaranteed by the fixpoint transfer theorem [9].

3. Pre-processing: decomposition

The first step of our approach is to re-formulate the analysis equation (1) into a fine-grained form, which we call
“decomposition”. Note that it is not obvious to identify 1ndependenc1es (irrelevant semantic behaviors) directly from the
original analysis given in (1), because the semantic function f . € $—$ works for abstract states but the independencies are
usually defined in terms of individual abstract locations. Thus, we first decompose the original analysis so that the analysis is
expressed in terms of each abstract location rather than the entire abstract states. In the case of packed relational analyses,
the analysis can be expressed in terms of each variable pack rather than each abstract location. With this decomposition, the
elimination procedures, which will be defined in Section 5, become simpler.

We first decompose the partitioning indices: 4 is refined by [, yielding 44

Ag2AxL
Then, the transition relation < is decomposed into <4:
g 2{((c, 1), (c.h) e Ag x A4lc'=c)

That is, each partitioning index (e.g., control point) c € A is split by the number (|L|) of elements in L. One transition c’<c in
the original analysis is represented by |L|? flows {((c, l) (c, M)I,I' e L} in the decomposed analysis.

Next, we suppose that each semantic function fC € S —§ is defined with decomposed functions {f(c G §-V|lel} such
that

Fe® =aLf 1)) @)
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In contrast to f «(8) that computes the entire output state for index c, f «)(8) computes the value for abstract location [ only.
Other values, say ' € L, are handled by their respective semantic functions, f -

Finally, we define the abstract semantics of decomposed analysis, which is characterized by the least fixpoint of abstract
semantic function Fy € (44— V) — (44— V) defined as

FaXa)=A(c,)) eAdf(c.D( LI [I’H>”<d<d,l’)]) 3)

(. sq(cl
The following lemma ensures that the decomposed analysis (3) is essentially the same as the original analysis (1).
Lemma 1. Vcea, lel. (fpF ), 1) = AfpF)c) ).

Proof. We prove the lemma by showing that the semantic function F, is equivalent to F. Because A4 = 4 x [, we can change
the type of Fye (44> V)—> (44— V) into Fye(A—>1L->V)>@A—1L—-V) as follows:

FaXy=acealel fq ( L [l’»—»f((d)(l’)])

(¢ I q(ch

Then, we can transform Fy into F as follows:

Fa(X) = aclLf ) ( LI [l’»ﬂc’)(!’)])

(€ =q(ch

:Ac.u.f"(c,,)<|_| L] =X )]) def. of &y

C‘—)Cl E|L

:Ac./llf(c,,) (J:LHX(C/)(Y)) - def.of U

L->V

=2cilf ¢y ( L f((c’)) e A XN =X(C)

e

=chc<|_|f<(d>) — @ O

e

4. Independencies=no-changes or no-contributions

Note that the abstract semantic function given in (3) involves some independencies. For example, when we analyze
statement x:=y, we surely know that the abstract semantic function changes the abstract value of variable x but the function
causes no changes for other variables. In addition, in order to change the value of x, only the value of y is necessary and other
variables have no contributions to the change. Nonetheless, the function given in (3) naively follows the transition flows of
the program, propagating the entire abstract states from all predecessors to the current partitioning index. In this section,
we formally define such independencies (no-changes and no-contributions) involved in the analyses.

4.1. No-changes

We say a decomposed index (c, ) € 44 is a no-change if the semantic function f .y does not define new information during
the analysis. The most obvious case is when f « has identity transference for all input states, i.e. f «c Satisfies the condition
vie$ f(C 1(8) =35(]). That is, f(c ) does not modify the value of I but always produces the same value as the value in the input
state, §(l). However, f () Needs not to have identity transference for all inputs; instead, it is sufficient for f () to have identity
transference only for those inputs that would occur during the analysis. For example, consider statement :xp:=1. The
semantic function for the statement is not identity for all input states. However, suppose p points to at most location b
during the analysis, then, we know that the decomposed semantic functions for other locations a( # b) all have identity
transference during the analysis because p does not point to other location than b. Thus, in general, (c,]) is a no-change if it
satisfies the following condition:

VS ) f )y ($) =30 )
where Ifp.;, denotes the input state to (c,l) at the fixpoint:

ifpey 2 L [[~AfpFa)c, 1]
(s (el

Note that § quantifies over the set of states that possibly occur at index (c, ) during the course of the analysis. Thus, condition
(4) means that the semantic function f . ;, does not generate new information during the analysis. We write NChg for the set
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of all no-change indices, i.e.,
NChg 2 {(c,) e Aa|V§ElfP(c,z)f<c,z)(§) =3$(I)

Note that the above definition is mathematical but not finitely computable. At the moment, suppose that we have NChg
before the analysis. In Section 5.4, we will show how to approximate NChg so that it is computable in practice.

4.2. No-contributions

We say that an abstract location I is a no-contribution to (c, ) if the value of I' does not contribute to changing the value
for (¢, ), i.e.,

VSCIp ciyf G\ =F ) (5)

which means that the value of I' is not necessary to produce the value of f () during the course of the analysis. We write
NCon(c, 1) for the set of all no-contributions to index (c, ), i.e.,

NCon(c,)) 2 (I e L|vSCp ey f ey $\r) =S ()}

Note that the above definition is mathematical but not finitely computable. At the moment, suppose that we have NCon
before the analysis. In Section 5.4, we will show how to approximate NCon.

5. Removing no-changes and no-contributions

Our goal is to transform the semantic function Fy4 to a sparse version F that does not involve no-changes and no-
contributions. As a result, when we analyze a statement, only the relevant input values are involved in the analysis and only
the meaningful values are generated from the statement.

In this section, we show how to eliminate the independencies. By eliminating them, the original analysis F, is
transformed into its sparse version F;. What are actually transformed is <4; we transform < into its sparse version <
by eliminating no-changes and no-contributions involved in <4. With <, sparse abstract semantic function F e (44— V)—
(Aq— V) is defined as follows:

Fs(Xs) = (1) GAd-f<c,1)< Ll [I'=Xsc, l/)]> (6)
(. l)ss(c,l)
Note that F, is only different from F, in that it is defined over < rather than <,. Thus, we can reuse abstract semantic
function f ., and its soundness results from the original analysis design.
We define no-change-elimination and no-contribution-elimination. Because these two transformations remove only the
must—indgpendences that do not affect the analysis results, F; should preserve both soundness and precision of original
analysis F.

5.1. No-change-elimination

Suppose we are given a no-change index (c, I). Eliminating such a no-change sacrifices neither the analysis’ correctness
nor precision because, no-change indices are just placeholders that do not generate new information during the analysis.

When (c, I) is a no-change, we remove (c, [) and rearrange the remaining flow edges properly. For example, consider
Fig. 2: the leftmost (respectively, rightmost) figure represents the flow relation (<) before (respectively, after) applying no-
change-elimination to (c, I). In Fig. 2, suppose (c, I) is a no-change point. Then, we observe its two implications: (1) the
abstract value associated with (p, 1), a predecessor of (c, ), is the only one that is needed to generate the value for (c, I)
because the semantic function f 1y Simply propagates the value of (p, I) without any change (in other words, other values

a b c
(p.1) (p.I") (p.I") (p.I) (p.I')
...... l>< v l >< v \ v
eh e (cl) |:> ()
(s.h) (sl (s, (s,) (s,

Fig. 2. No-change elimination. If the value at (c, I) is guaranteed to have no changes during the analysis, bypassing (c, ) is safe and preserves the analysis
precision.
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such as (p, I') are not necessary); (2) in order for the value of (p, I) to be propagated to (s, I) and (s, I'), the value needs not pass
through (c, I) because the value is not changed by f ;. From these observations, we directly connect the input flow
((p, D, (c, 1)) into all the successors of (c, I), adding the thick flows in Fig. 2(b). Then, we remove (c, ) as well as flow edges
connected to (c, I), leading to Fig. 2(c).

Formally, given a no-change point (c, I), the no-change-elimination is defined by transformation 7° ;C(;lghg eP(Ag x Ag)—
P(Aq x Ag) defined as follows:

T ()2 (@) U (@D, 6.1 D=ED A Do)~ ©
\{((p’ l’)a (C> I))lu)s I/)L)(C’ l)} o @
M@ h.s. e, he(s.y - - ®

Given a no-change point (c, [), TEIC(;IL)'hg performs three operations: @ it connects (p, I) to all of the successors of (c, [); @ it
removes all the inflows ((p,l),(c,])); and @ it removes all the outflows ((c,),(s,)). In effect, after the elimination, the

no-change point (c, [) is ignored during the analysis. The following lemma ensures the correctness of 7° ff(;’ghg.

Len)r/na 2. Let (c, ) e 44 be a no-change point. Let <4 and </, be flow relations such that (=) = Tﬁl&g(‘—’d)- Let S’ and S be
IfpF, and IfpF 4, respectively, where

F{/ X =ac.heaf ( Ll [I'=Xc, l’)])

(©.y=yeh

FaX) =i, edaf ( Ll =X, l’)]) :

(1) q4(cl)
Then,
v, I)edq st (c,[)#cD).Sc,1)=8(c,D.

Proof. We prove the lemma by showing that the fixpoint equation of F d/ is equivalent to the equation of F, up to the points
that remain after the transformation. For simplicity, consider the case with the following assumptions: f ={l} and
Sqa={((p, D, (c,D),((c,]),(s, D)} (it is easy to extend this proof to the general case.). Then, the fixpoint equations of F,; are as
follows:

S(e.hy = ey {S(p. b))
(s, =F 5. ([l=S(c, ) )
We can transform the equation into the fixpoint equation of F d/ as follows:
S(s.h=f5p([l=Sc. b - by (7)
= spU=f pl=S@.hD) - by (7)
=fspU=S@.DD) ++ fep®) =5

By the definition of Tffg,’c)hg, s {((p, ), (s, D)}. Thus, the fixpoint equation of Fiiss :f(s,,)([l»—»S(p, D], which is equivalent to

the equations of F; as derived above. ©

5.2. No-contribution-elimination

The second one removes no-contributions from the analysis. It is enough to apply the no-contribution elimination only
to the change points where values are ever changed during the analysis, because independencies involved in no-changes are
all removed by the no-change elimination.

Suppose we are given a flow ((p, ), (c,])) € (=4) to a change point. We say the flow is no-contribution flow if I' e NCon(c, I).
The goal of the no-contribution-elimination is to remove all such flows, which is also safe because no-contribution flows are,
by definition, unnecessary in generating new information during the course of the analysis.

For each no-contribution flow ((p,l),(c,l)), we simply remove it from <, For example, consider Fig. 3: the left
(respectively, right) figure represents the flow relation (<,) before (respectively, after) applying no-contribution-elimina-
tion to ((p,I), (¢, ). In Fig. 3, suppose (c, I) is a change point, i.e., H§glfp(c’,)f(cy,)(§) #5(l), and ((p, 1), (c, 1)) is a no-contribution
flow. In this case, we can safely remove the flow because it is unnecessary to generate the value of (c, I).
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a b
(p.1) (Pl (p.1) (p.1"
\ ;\4 \/ \/ \ \/
(c.l) (c,I) |:> (c.h) (c.l)
\ >< \/ \/ >< \/
(s,l) (s, (s,) (s,I)

Fig. 3. No-contribution elimination. If flow ((p,['), (c,)) is guaranteed to have no contributions to generating the values at (c, [), removing the value flow is
still safe and precision-preserving.

Formally, given a no-contribution flow ((p,['), (c, 1)), the no-contribution-elimination is simply defined by transformation
TP 35 follows:
noCon N

TEDED () 2 )\ ((p, 1), (c, D).

Lemma 3. Let ((p, ), (c, 1)) be a no-contribution flow. Let <4 and </, be flow relations such that (=) = Tgfg.clg;l(c,l))(qd). Let ' and
S be IfpF,; and IfpF 4, respectively, where

F{ X =achesf e ( L =X, F)])

[CROEA

Fa)=ac.hedaf < L =X, r)]>

(©.sq(ch

Then,
V(e ) eay.Sch=S8(c).

Proof. We prove the lemma by showing that the fixpoint equation of F d/ is equivalent to the equation of F. For simplicity,
consider the case with the following assumptions: <, = {((p, D, (c.D),((p.I),(c, )} and I' e NCon(c, ) (it is easy to extend this
proof to the general case.). Then, the fixpoint equations of F,; are as follows:

8¢, 1) = f 1y [l=S(p, Ll = S(p, 1)) (8)

We can transform the equation into the fixpoint equation of F d/ as follows:

Sl =f (ISP, Hud' =Sp, 1))
—Fen(leS@.0.I=S@. D) - def. of U
=fep@=Sp.D.I=Sp.1]y) -~ ' eNCon(c.])
=fep([l=Sp. D) - def.of \

By the definition of 7ZV:D <1 — {(p, 1), (c, I))}. Thus, the fixpoint equation of F4 is &' =f ;,([l~S(c, h]), which is equivalent

~. noCon
to the equations of F, as derived above. ©

5.3. Final analysis

The final flow relation < is obtained by applying the two eliminations to <, until stabilized. No-change-elimination and
no-contribution-elimination do not interfere with each other because no-change-elimination is applied only to no-change
points and the no-contribution-elimination is applied only to change points. Thus, we can repeatedly apply the trans-
formations in any order. Both transformations eventually terminate because the space A4 is finite. With <, we obtain the
final sparse semantic function (6).

Note that we do not need to apply the transformations until stabilized. Because the analysis semantics is preserved over
the elementary step of both transformations (7 ff(;'ghg and 7 ‘n‘l{”c'g,;‘c”” ), we can stop the elimination procedures at any
desired point.
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5.4. Approximating no-changes and no-contributions

In practice, we need to approximate NChg and NCon. Our method presented so far serves as a purpose of defining a
mathematically correct analysis; it does not yet serve for practical uses. The main reason is that NChg and NCon are defined
with the original fixpoint IfpF computed; thus, in order to compute NChg and NCon, we need to first compute IfpF, the
analysis that we actually want to make sparse. Therefore, we should use approximations of NChg and NCon, which, from
now on, we denote NEFg and NCon, respectively. Then, no-change-elimination and no-contribution-elimination are also
approximated in that they operate with NEFg and NCon instead of NChg and NCon.

For correctness, NChg and NCon should be under-approximations of NChg and NCon, respectively. This condition is intuitive
and we can easily find a counterexample if the condition is not satisfied. Suppose (c, ) Néﬁg and (c, I)¢ NChg for abstract location
(¢, I). Performing the no-change-elimination with NEFg is unsafe because (c, I) is not an actual no-change point ((c, [)¢ NChg).

It is easy to check that the analysis obtained by removing approximated independencies are still correct and precision-
preserving. We already proved that eliminating no-changes and no-contributions is safe. The approximated independencies
are subsets of concrete ones, i.e., NEFg =NChg and V(c,]) eAd.NEBn(c, I) = NCon(c, 1), and therefore they are clearly no-
changes and no-contributions and removing them is safe. However, because of the approximation, some no-changes and
no-contributions would be still present in the final analysis.

6. An instantiation example: a non-relational analysis

In this section, we show how our technique is applied to a non-relational static analysis. In Section 6.1, we describe a
framework for a simple class of non-relational abstract interpretation, and in Section 6.2, we show how to find NChg and
NCon for the analysis.

6.1. Baseline analysis

Language: We assume that the partitioning indices A are control points of the program and each partitioning index ce A
is associated with a command. We consider a simple imperative language that has integers and pointers as values. The
syntax of the language is as follows:

cmd — assign(x, e)|assign(xx, e)|assume(x < n)
e —n|x|&x|xx|e+e

Command assign(x, e) assigns the value of expression e to variable x. assign(xx, e) performs indirect assignments; the value of e is
assigned to the location that x points to. assume(x < n) makes the program continue only when the condition is satisfied.
Abstract semantics: Note that our framework requires abstract states to be maps from abstract locations to values (Section 2.3).
Consider the following abstract domains:
S=0-V, L=var, V=ZxP, P=pL)
An abstract state ($) is a map from a set of abstract locations (f) to a domain of abstract values (V). We treat each program

variable as an abstract location. An abstract value is a pair of an abstract integer (Z such that P(Z) y<:>7 7) and an abstract pointer
az

(®). An abstract pointer is a set of abstract locations. Note that the domain is generic so we can freely choose any non-relational
numeric domains for Z, such as intervals [8]. R
The abstract semantics is defined by the least fixpoint of semantic function F as described in Eq. (1), where the abstract

semantic function f. € S — S is defined as follows: (Notation: we write e.A, e.B to denote the first and the second element of
ee A x B, respectively.)

sx—~E@)@S)] c = assign(x, e)
fe® =1 Smx).PAEES)] c = assign(k x, e)

$[x—(3(x).2M; az({z € Z|z < n)),§(x).P)] ¢ =assume(x < n)
The abstract effect of assign(x, e) is to update the value of x with the evaluation result of e. assign(xx, e) weakly updates the

value of abstract locations that xx denotes.! assume(x < n) prunes the numeric value of x according to the condition. The
abstract value of expression e is computed by an auxiliary function £ ee—S — V, defined as follows:

EMBS) = (az({n}), L)
EXB) =5x)
EEX)(8) =( L,{x})

! For brevity, we consider only weak updates. Applying strong update is orthogonal to our sparse analysis design.



108 Y. Ko et al. / Computer Languages, Systems & Structures 40 (2014) 99-111

EGX)(3) = B(@)lae$x).P)
Ee1+e)d) = (vi.Z+ ;v2.2,v1.P U vy.P)

where v; = &£(e1)(8), vy =£&(e2)(5)

6.2. Finding no-changes and no-contributions

To approximate NChg and NCon, we use a conservative pre-analysis. The pre-analysis we use is a flow-insensitive
version of the baseline analysis:

A-S s i Sap =JX. Ll{X(C)lCEdOm(X)}Fp =)5. |_|fC(s)

Other than the above pre-analysis, any sound approximation of the original analysis can be used as a pre-analysis.
Let T pE S be the pre-analysis results. . Using T p» We approximate no-changes and no-contributions in the analysis. For
each partitioning index ¢, we compute NChg by excluding abstract locations whose values are possibly modified at ¢

NChg = {(c,l)e A x [ |l e ([ —{x}) A (c = assign(x, &) or assume(x < 1))}
uf(c,hea x L|le ({ —7 »(x).P) A c =assign(xx, e)}

According to the definition of f () assign(x,e) and assume(x <n) do not define any abstract locations except x.
assign(xx, €) may change values of abstract locations in 7 »(x).P. Because the pre-analysis is conservative, we ensure that all
abstract locations in | f—7 p(X). P are never modified during the actual analysis.

We compute NCon(c, ) by excluding abstract locations that are possibly used when analyzing control point c:

[ —uU(e)Tp) ¢ = assign(x, e)
NCon(c,l)={ [ —(x} U Tpx).P UU(e)Tp(c)) c=assign(:x,e)
L—{x) ¢ =assume(x < 1)

where ¢/(e)($) computes the set of abstract locations that are used during the evaluation of £(e)(3):

UmS) =0
URX)S) = {x}
UEx)S) =0

UEX)S) = (X} U S(x).P
U(er+e2)(8) =U(er)(S) U U(ez)(S)

The definition of NEBn(C, l) is also naturally derived from the definition offc. When cmd(c) is assign(x, e), all locations
except those in ¢(e)(7° p) are unnecessary. Analyzing assign(«x, ) requires location x (because of semantic definition of weak
updates), the points-to set of x (f’p(x).l]ﬁ’), and u(e)(j'p). Note that in the above definition, for simplicity, we aggressively
approximated NCon(c,[) even without considering the current location L If this is unsatisfactory, we can design NCon(c, )
more precisely, discriminating each I, which increases the sparseness of the final sparse analysis.

7. Experiments

In this section, we check the performance of our technique in practice. We implemented our technique on top of our
Sparrow analysis framework [18,16,21,22,24]. The analyzer is for detecting memory safety violations such as buffer overruns
in C programs, based on flow-sensitive abstract interpretation with the interval domain [8]. Essentially, the abstract domain
of the analyzer is the same with that presented in the previous section, but we use intervals for the value domain (V).

Setting: We used 15 open source softwares as benchmarks (Table 1). The benchmarks are various open-source
applications, and most of them are from GNU open-source projects. Standard library calls are summarized using handcrafted
function stubs. For other unknown procedure calls to external code, we assume that the procedure returns arbitrary values
and has no side-effect. Procedures that are unreachable from the main procedure, such as callbacks, are made to be explicitly
called from the main procedure. All experiments were done on a Linux 2.6 system running on a single core of Intel 3.07 GHz
box with 24 GB of main memory.

The baseline analyzer, Baseline, is a version of Sparrow that performs the access-based localization. With the access-
based localization technique [22], each code block is analyzed with only the to-be-accessed parts of its input state, reducing
a lot of analysis time and memory consumption. It has been reported that the technique is faster by up to 50 times than the
conventional, reachability-based localization technique [25]. More details on the baseline analysis are available at [25].
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Table 1

Experimental results. LOC reports lines of code obtained by running wc on the source codes before preprocessing. Time and Mem are analysis time (in s)
and peak memory consumption (in MB) of the various versions of analyses. Time for Sparse includes the time for both sparsification and actual analysis
time. oo means the analysis ran out of time (exceeded 24 h time limit) or out of memory (exceeded 24 GB). Spd1 is the speed-up of Sparse over Baseline.
Mem| shows the memory savings.

Programs LoC Baseline Sparse Spdt Mem|
Time Mem Time Mem
httptunnel-3.3 6K 15 59 7 42 2 x 29%
gzip-1.2.4a 7K 68 133 16 69 4 x 48%
parser 10K 832 338 99 181 8 x 47%
twolf 19K 439 370 71 169 6 x 54%
sed-4.0.8 25K 249 303 108 180 2 x 41%
tar-1.13 20K 7489 2133 431 216 4 x 64%
make-3.76.1 27K 1830 1080 1148 560 7 x 48%
wget-1.9 35K 3049 934 442 369 7 x 60%
screen-4.0.2 45K 00 00 9915 1758 N/A N/A
bison-2.4 56K 10,541 180 180 237 59 x 58%
lighttpd-1.4.24 57K 8983 326 326 366 28 x 57%
a2ps-4.14 64K 12,831 671 672 476 19 x 74%
gsasl-1.6.0 91K ) ) 6742 372 N/A N/A
bash-2.05a 105K 1029 684 120 188 9 x 73%
Ish-2.0.4 111K 30,456 1660 1407 333 22 x 80%

We applied our technique to Baseline and derived Sparse. In implementing Sparse, we do not need to explicitly perform
the decomposition step. Instead, we distinguish decomposed control points implicitly by tagging every edge with a relevant
set of abstract locations between the control points and manipulate the edges. When we remove a no-change (c, l) e NChg,
we draw a new edge between a predecessor and a successor of ¢, tag the edge with {I}, and remove ! from the original set.
Likewise, when we remove a no-contribution I' Nan(c, I), we just remove I' from the set on the incoming edge of c. We
applied our technique intraprocedurally: only the nodes inside procedures are made sparse and interprocedural edges
remain unchanged.

Results: Table 1 shows the impact of our technique. We compare analysis time and peak memory consumption of the two
analyzers. Because all of the analyzers share the same front-end, we only measure analysis time.

Our technique definitely improves the analysis performance in terms of both time and memory. Sparse is faster by 2-59
times and saves memory consumption by 29-80% compared to Baseline. Furthermore, Sparse is able to analyze large and
complex programs. In our experiments, the most complex program in the benchmarks, screen-4.0.2, can be analyzed within
3 h and 1.8 GB of memory.

Sparse outperforms Baseline because Sparse more frequently localizes abstract memories and skips meaningless
propagations. In our experiments, 97.4-99.9% of abstract locations were no-changes or no-contributions at each control
point. Moreover, the improvement is more outstanding in analyzing large programs: 2-7 x speed-up and 29-60% of
memory reduction for small programs (less than 45K LOC) but 9-59 x speed-up and 58-80% of memory reduction for the
larger programs (more than 45K LOC).

8. Related work and discussion

Our key contribution, and the main difference from the existing sparse evaluation techniques [4,27], is that we combine
the “decomposition” and “sparsification” procedures together within the abstract interpretation framework. Although the
basic ideas of those two procedures (decomposition and sparsification) are not entirely new individually, they have not been
used together in the previous literature.

Previous sparse evaluation techniques [4,27] are primarily concerned with the sparsification process only. Thus, existing
approaches are not effective “as is” for semantic analyses that we consider in this paper. In other words, previous sparse
evaluation techniques are effective only when the input analysis problem is already defined in a sparse form to which the
sparsification process is directly applicable. On the other hand, our technique employs a decomposition step and make
sparsification effective even when the original analysis is not favorable for the sparsification process.

The program dependence graph (PDG) [13] also does not utilize the decomposition step and hence not suitable for
detailed semantic analyses. PDGs are an intermediate representation that makes explicit the data and control dependences
of the program. However, as in the previous sparse evaluation techniques, PDGs do not provide fine-grained dependences
that are essential for sparsifying the class of detailed semantic analyses, as described in this paper.

The decomposition idea has also been used previously but for different purposes. For example, in [29], the domain of
abstract environment, which is a map from abstract locations to abstract values, is decomposed into the “exploded graph”
representation, which is similar to our decomposition step. In this paper, we put the decomposition and sparsification ideas
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together within the abstract interpretation framework and show that the sparse evaluation idea can be used more broadly
than before.

In the literature, there exist two approaches to make an analysis sparse. One approach is sparse evaluation [4,27] and the
other is sparse analysis [28,32,12,3,14,15,23]. While conventional static analyses propagate abstract values along control
flows of the program, sparse analysis techniques use def-use dependencies (often in the SSA form) of the program and
directly propagate abstract values from their definition points to their use points.

Both approaches have their own merits and hence can be complementarily used in practice. For example, the sparse
analysis approach may be more convenient to implement than the sparse evaluation approach, because there exist many
practical algorithms for dependency generation and manipulation (such as SSA algorithms [10,1,5]) and therefore the
sparsifying process can be effectively realized on top of the off-the-shelf implementations [14,15]. On the other hand, the
sparse evaluation approach is more flexible in controlling the analysis' sparseness than the sparse analysis approach. Note
that, with the sparse analysis method, a safe sparse analysis is obtained only after the sparsifying process is completely
finished because the method gathers may-dependencies and all the dependencies are required for soundness. By contrast, in
a sparse evaluation approach, it is always safe to stop the sparsifying process at any desired point during the analysis
because the approach eliminates only the must-independencies. This flexibility would be useful in practice when tuning the
balance of costs between sparsifying process and actual analysis.

Given that sparse evaluation and sparse analysis approaches may have different merits in practice, it would be good if
analysis designers can freely choose the most appropriate method depending on their situations, or combine the merits of
both approaches. Unfortunately, analysis designers could not use the sparse evaluation approach when developing detailed
static analyses. Our technique can be considered as an effort to give analysis designers more flexibility when choosing sparse
analysis techniques.

Our work improves the access-based localization technique [22] in two ways. The access-based localization reduces the
cost of interprocedural analysis by analyzing procedures with only the portion of the abstract states that will be accessed
by the procedures. Similar to our technique, the access information is computed by a flow-insensitive pre-analysis.
Theoretically, our no-contribution elimination (Section 5.2) can be understood as a fine-grained version of the localization
technique: while the previous technique [22] applies localization only at procedure entries, we localize abstract states
at every statement (including procedure entries). Furthermore, our technique also applies the no-change elimination
(Section 5.1), which is entirely new compared to the access-based localization technique.

9. Conclusion

In this paper, we have presented a new sparse evaluation technique and showed that the sparse evaluation ideas can be
applicable even to elaborate static analyses in general. Compared to existing sparse evaluation techniques, our technique
introduces a new preprocessing step (called “decomposition”) that reformulates the original analysis into a form where
semantic irrelevance is explicitly represented. After the decomposition, our technique makes analysis sparse by eliminating
semantic independencies (called “no-changes” and “no-contributions”) involved in the usual abstract interpretation. The
elimination process is semantics-preserving in that both correctness and precision of the analysis are preserved. We show
the effectiveness of the technique by demonstrating the achieved speed-up of a realistic C global analyzer with open-source
C benchmarks.
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